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Chapter 1

Warm-up problem set

1.1 Applications

1.

Let a,b, c,d be real numbers such that a? 4 b2 + ¢* 4 d? = 4. Prove that
@+ +3+d<s
If a, b, c are non-negative numbers, then
a3+b3+c3—3ab62 2(?—0,)3.
Let a,b, c be positive numbers such that abc = 1. Prove that

a+b+c> sfa? + b? + ¢?
3 - 3 .

. Let a, b, ¢ be non-negative numbers such that a®+ 53+ c3 = 3. Prove that

ab? 4 pict + ctat < 3.

(Vasile Cirtoaje, GM-A, 1, 2003)

. If a, b, ¢ are non-negative numbers, then

a® + b2 + ¢® + 2abc + 1 > 2(ab + be + ca).

(Darij Grinberg, MS, 2004)

. If a, b, ¢ are distinct real numbers, then

a? b2 ¢?
6-oF " (c—ap  (@a=0bp
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7. If a,b, c are non-negative numbers, then
(a? —be)Vb+c+ (b% — ca)vVe+ a+ (2 —ab)Va + b > 0.

8. If a,b, ¢, d are non-negative real numbers, then

a—2b + b—rc + c—d 4 d—a S
a+2b+c¢ b4+2c4+d c+2d+a d+2¢a+b

9, Let a,b,c be non-negative numbers such that
A+ +E=a+b+e

Prove that
a?b? + b2c? 4 ¢*a? < ab+ bc+4 ca.

(Vasile Cirtoaje, MS, 2006)

10. Let a, b, ¢ be non-negative numbers, no two of them are zero. Then,

2 b2 2
>1
a? + ab + b2 +bz+bc+c2+c2+ca+a2 =

11. If a, b, ¢ are non-negative numbers, then

Y LA S S
a3+ (b+c)3 b3+(c+a)3+ S+ (a+bd)3~ 7

12. Let a, b, ¢ be positive numbers and let

E(a,b,c) = ala—b)(a—c) +bb—c)(b—a)+ c(c—a)(c—b).

Prove that
a) (a + b+ c)E(a,b,c) > ab(a — b) + be(b— ¢)? 4 ca(c —a)?,
1 1 1
b) 2(E+ E—{- E)E(a,b,c) > (a—b)? + (b—c)? + (c —a)>.

(Vasile Cirtoaje, MS, 2005)

13. Let a,b, ¢ and z,y, 2z be real numbers such that a+z 2 b+y>ec+220
and a + b+ ¢ = x4 v + 2. Prove that

ay +bxr > ac+zxz.
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1
14, Let a,b,c € [5,3] Prove that

v

a+b+c 7
a+b b4+ec c+a” 5

15. Let a,b,c and z,y, z be non-negative numbers such that
a+b+e=z+y+z
Prove that
az(a+ z) + by(b+ y) + cz(c+ z) > 3(abe + zyz).
(Vasile Cirtoaje, MS, 2005)
16. If a,b, ¢ are non-negative numbers, then
Aa+ b+ c)® > 27(ab? + be? + ca® + abe).
17. Let a,b, ¢ be non-negative numbers such that a + b+ ¢ = 3. Prove that

1 1 1
> 1.
2ab2+1+2bc2+1 +2ca2+1 =

18. If a,b, c,d are positive numbers, then

| 1 1 1 4
>
a2+ab+b2+bc+c2+cd+d2+da_ac+bd

1

o

1
Tabece [ﬁ,\/ﬁ],then

3 .3 3 2 9 9
a+2b " b2 "ct2aZaib  bre era

20. Let a,b,c be non-negative numbers such that ab+ be + ca = 3. Prove

that
1 1 1
<1.

2r2 2t @S
21. Let a,b, ¢ be non-negative real numbers such that ab+be+ca = 3. Prove
that

1 + 1 + 1 >3
a?24+1 241 211°2
(

Vasile Cirtoaje, MS, 2005)
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22. Let a,b,c be non-negative numbers such that a® + > + ¢2 = 3 Prove

that
a b c

<
b+2+c-%-2+ at+2~ !
(Vasile Cirtoaje, MS, 2005)

23. Let a,b,c be positive numbers such that ebc = 1. Prove that

a—1 b-1 c~-1
a) + + >0,
b c a
a—1 b—-1 e—1
b >0
)b+c+c+a+a+b—

24. Let a, b, ¢, d be non-negative numbers such that a?—ab+b? = ¢?—cd+d2.
Prove that

(a+ b)(c+d) > 2(ab+ cd).

25. Let ay,a2, .,an be positive numbers such that ajay . a, = 1. Prove

that ) ) .
o1
1+(n—1)a1+1+(n—1)a2 1+ (n—1l)an —

(Vasile Cirtoaje, GM-B, 10, 1991)

26. Let a, b, ¢, d be non-negative real numbers such that a+b2+c¢?+d? = 1
Prove that
(1 —a)(1=b)(1 —c)(1 —d) > abed.

( Vasile Cirtoaje, GM-B, 9-10, 2001)

27. If a,b, ¢ are positive real numbers, then

Y R
a-+b b+c c+a

(Vasile Cirtoaje, GM-B, 7-8, 1992)

28, If a,b, ¢, d are positive real numbers, then

2 2
)+ ) + () + () =

(Vaside Cirtoaje, GM-B, 6, 1995)
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1
29. Let a,b,c be positive numbers such that a + b+ ¢ = - +-+-. If
a<b<e, then
ab’cd > 1.

(Vasile Cirtoaje, GM-B, 11, 1998)
30. Let a,b, c be non-negative numbers, no two of them are zero Then

a2+b2+c2>a+b+c
b2 4+c? " c2+a?  a?+b T b+c cH+a a+b

( Vasile Cirtoaje, GM-B, 10, 2002)
31. If a, b, ¢ are non-negative numbers, then
2(a® + 1)(6® + 1)(c* + 1) > (a+ 1)(b+ 1)(c + 1)(abe + 1).
( Vasile Cirtoaje, GM-A, 2, 2001)
32. If a,b, ¢ are non-negative numbers, then
31—a+a?)(1-b+b)1—c+ c?) > 1+ abe + a?b?c”.
(Vasile Cirtoaje, Mircea Lascu, RMT, 1-2, 1989)

33. If a,b, ¢, d are non-negative numbers, then
(1-—a+a®)(1=-b+bY)(1—c+ )1 —d+d?) > (Ii;bii)z.
(Vasde Cirtoaje, GM-B, 1, 1992)
34. If a,b, c are non-negative numbers, then
(a® + ab+ b2)(b* + be + ¢?)(c? 4 ca + %) > (ab + be + ca)?.

(Vasile Cirtoaje, Mircea Lascu, ONI, 1995)

35. Let a,b,c,d be positive numbers such that abed = 1. Prove that

1 1 1
+
14+ab+be+ca lth')c-i-ccH-db-*-l-i-caH—da,-i-ac-*-l+4:1!a-{~ab+bdS L
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36. If a,b,c and z, y, = are real numbers, then
4(a? + 22)(b® + ¥%)( + 2°) > 3(bex + cay + abz)?.
( Vasile Cirloaje, MS, 2004)
37. lfa>b>c>d> e, then
(a+b+c+d+e)? > 8(ac+ bd + ce).

For e > 0, determine when equality occurs.
(Vesile Cirtoaje, MS, 2005)

38. If a,b, ¢, d are real numbers, then
6(a% + b2+ 2 +d?) + (a+ b+ c+d)* > 12(ab + be + cd)
(Vasile Cirtoaje, MS, 2005)

39. If a,b, ¢ are positive numbers, then

1 1 1
\/(a+b+c)( +7+7 >1+\[ \/a? b?+c2 Stmt )

( Vasile Cirtoaje, GM-B, 11, 2002)

40. If a,b,c, d are positive numbers, then

1 1 1 1
54 (20 + B+ 2) () —22 @b+ (g +g)

(Vasie Cirtoaje, GM-B, 5, 2004)

41. If a,b, ¢, d are positive numbers, then

a—b b—c¢c c¢c—d d—a

> 0.
i rcterd T dTa Tarn =
42, If a,b,c > —1, then
1+ a? 14 b2 1+ c?

>
1+ b+ c? iy era TTrass ™
(Laurentiv Panaitopol, Jumor BMO, 2003)
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43. Let a,b,c and z,v, z be positive real numbers such that
(a+b+c)(z+y+2)=(a®+b%+ ) (2 +4° +2%) =4.

Prove that.

abcxyz < 3%

(Vasile Cirtoaje, Mircea Lascu, ONI, 1996)

44. Let a,b, ¢ be positive numbers such that a® + b2 + ¢2 = 3 Prove that

a2+b2 b2+c2 c2+a2

>3
a+t+b b+c c+a ~

(Cezar Lupu, MS, 2005)

45. Let a,b,c be non-negative numbers, no two of which are zero. Prove

that
& 1 1 1 3

> .
a2+bcJr b2 + ca + c2+ab ™ ab+ be+ ca
(Vasile Cirtoage, MS, 2005)

46. Let a,b,c be non-negative numbers, no two of which are zero. Prove
that

1 1 1 3
> .
bQ—bc+c2+c2—ca+a2+cﬁ—ab—i—b2 “ab+ bc+ ca

47. Let a, b, c be positive numbers such that a 4- b+ ¢ = 3 Prove that

12

b _ >
N c+ab+bc+ca -

48. Let a,b,c be non-negative numbers such that a® + b2 + ¢2 = 3 Prove
that
12 + 9abc > 7(ab + bc + ca).

(Vasile Cirtoaje, MS, 2005)

49. Let a,b, ¢ be non-negative numbers such that ab + be + ca = 3. Prove
that

a3+ b3 +c3+7abc2 10.

(Vasile Cirtoage, MS, 2005)
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50. If a,b, ¢ are positive numbers such that abc = 1, then
(a+b)bte)c+ta)+7=5(a+b+e)
(Vasile Cirtoaje, MS, 2005)

51. Let a,b,c be non-negative numbers, no two of which are zero. Prove
that
al 4 b3 4 A3 < 1
(2024 b2)(2a2+c2) ~ (202+¢?)(20%2+a?)  (2c2+a?)(2c2+b%) T at+b+te
(Vasile Cirtoaje, MS, 2005)

52. Let a,b, c be non-negative numbers such that a + b+ ¢ > 3. Prove that

1 1 1
- <1
c12+b+c+(:z+b2+cJf a+b+c?—

53. Let a,b, c be non-negative numbers such that ab+ bc+ca=3. lf r > 1,

t.
hen 1 1 1 3

< .
r+czz—}-b2+1"+b2+c2+r+c2~!-a2 “r42
(Pham Van Thuan, MS, 2005)

54. Let a,b,c be positive numbers such that abc =1 Prove that

R WS S 5 o1
1tad (T+63  (Q+cP  (T+a)(1+b)(1+¢ =

(Pham Kim Hung, MS, 2006)

55. Let a, b, ¢ be positive numbers such that abc =1 Prove that

2 3
at+b+c ab+ be + ca

56. If a,b, c are real numbers, then

Fix
52

21 + abe) + /2(1 + a2)(1 + 62)(1 + ) > (1 + a)(1 + b)(1 +¢)
(Wolfgang Berndt, MS, 2006)

57. Let a,b,c be non-negative numbers, no two of which are zero. Prove

that
alb+c) , bcte) cath)

a®+bc b t+ca  crtab T
(Pham Kim Hung, MS, 2006)
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58. Let a,b,c be non-negative numbers, no two of which are zero. Prove

that
a(b+ c) \/b(c+ a) \/c(a+b)
> 2.
\/;2+bc + b2 + ca + ct+ab ~

(Vasile Cirtoaje, MS, 2006)

59. Let a,b,c be non-negative numbers, no two of which are zero. Prove

that
1 1 1 a b c

> .
b+c+c+a+a+b_a2+bc+b2+ca+c2+ab

60. Let a,b,c be non-negative numbers, no two of which are zero Prove

that
1 1 1 2a 2b 2¢

>
b+c+c+a+ a+b ™ 3a2+bc+ 3b2+ca+ 3c? 4+ ab
( Vasile Cirtoaje, MS, 2005)

61. Let a, b, ¢ be positive numbers such that a® + b2 + ¢ = 3. Prove that
5(at b+c)+ 3 > 18
a4 0+c¢ 2be = .

(Vasile Cirtoaje, MS, 2005)

62. Let a,b, ¢ be non-negative numbers such that a + b+ ¢ = 3 Prove that

1 + 1 1 < 3
6 —ab 6—bc+6—ca_5
63. Let n > 4 and let ay,ay, ..,a, be real numbers such that

a1+ax+- -+ap >n and a%+a%+ . +aﬁ2n2.

Prove that
max{ay,az,...,a,} > 2.

(Titu Andreescu, USAMO, 1999)

64. Let a,b,c be non-negative numbers, no two of which are zero. Prove

that
a b c >13_2(ab+bc+ca)

b — -
b+ec c+a a+bT 6 3(a?+ b2+ c?)
(Vasile Cirtoaje, MS, 2006)
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65. Lot a,b, ¢ be non-uegative numbers, no two of which are zero. Prove

that
al(btc) bc+a) cAlatbh)

>albic
(Dary Grinberg, MS, 2004)

66. Let a, b, c be non-negative numbers such that
(a+b)(b+c)c+a)=2.

Prove that
(a® + be)(b? + ca)(c? + ab) < 1.

( Vasile Cirtoaze, MS, 2005)
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1.2 Solutions

1. Let a,b,c,d be real numbers such that a® + b% + ¢* + d® = 4. Prove that

S+l +dB <8

Solution. From a? +b% + c? + d> = 4 we get a2 < 4,2 < 2, a*(a —2) <0,

a® < 26%. Similarly, 4% < 2b2, & < 2¢2, @3 < 24*. Thus,
a3+b3+c3+d332(a2+b2+c2+d2)=8.
Equality occurs for (a,b,¢,d) = (2,0,0,0) or any cyclic permutation.
*

2. If a,b, c are non-negative numbers, then

b 3
a3+b3+c3—3abc22( ;c—a) .

Solution. By the AM-GM Inequality we have a3 + b3 + & > 3abe.

b+c o b+ e
——a <0, the inequality is trivial. Consider now —5——a > 0. Let

3
E:a3+b3+c3—3abc—2(b;c—a) .
Setting b = @ + 2z and ¢ = a + 2y, we obtain

E = 12a(:z:2 — 2y + y2) +6(z+y)(z — y)2 =

26(:r+y)(x—y)2=g(b+c—a) (b—c)2>0.

Equality occurs when either (a,b,c) ~ (1,1,1) or (a, b,c) ~(0,1,1)
*

3. Let a,b,c be positive numbers such that abc = 1. Prove that

a+b-|—c> s/a? + b2 4 c2
3 - 3 '

If
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First Solution Write the inequality in the homogeneous form
(@a+ b+ c)® > 8labe(a® + b% + ¢?)
In order to eliminate the product abc, we can use the known inequality
(ab + be + ca)? > 3abe(a + b+ ¢),
which is equivalent to
a2(b—c)? + b (e—a)? + A(a—b)2 >0
Thus, we still have to show that
(a+ b+ c)® > 27(ab -+ be + ca)?(a? + b2 + 7).
Setting S=a+ b+ cand Q = ab+ bc + ca yields
(a+b+c)® —27(ab + be + ca)(a® + b* + c*) =
= §6 —27Q%(S? —2Q) = (S* - 3Q)%(S* + 6Q) > 0.
Equality occurs fora=b=c=1
Second Solution In order to prove the homogeneous inequality
(a+ b+ e)® > 8labe(a® + b? + ¢?),

we may give up the constraint abc = 1 and assume that a + b + ¢ = 3. For
a + b+ ¢ = 3, we must show that the expression

E(a,b,c) = abc(a® + b* + ¢?)

is maximal for @ = b = ¢ = 1. For the sake of contradiction, assume that
E{a,b,c) is maximal for a triple (a,b, ¢} with b # c. To finish the proof it
suffices to show that

E(a,b,c) < E (a,é—ﬁ b+c)

2 72
Indeed, we have

2 4
E (aégE , 9%9) —E(a,b,c) =a3l(%f) —bc]+a [2 (9%9) —bc(b2+62)]=

4

1l g, 2,1 .
Za(b c) +8a(b c) >0
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*

d. Let a, b, c be non-negative numbers such that ad + b3 + 3 = 3. Prove that
a*h? + bict + ctat < 3.

Solution (by Gabriel Dospinescu). By the AM-GM Inequality, we have

BBl _4—a3

be <
€= 3 3

Then,
bt < 4b3c3 — a3b3e3
- 3

and, similarly,

313
at < 4c3a3 — a3b3cP aft < 4a3b3 — a®b3c3 .
3 3
Summing up these inequalities yields
3b3 3.3 3.3
4(ab® + b°c +ca)—a3b3c3.

a*h? + biet + clat < 3

Thus, it suffices to show that
4(a3® + 63 + 3a3) — 3a33° < 9,
which is just the third degree Schur’s Inequality
d(zy+yz+2z)(z+y+2)—9zy2 < (z+y+ 2)°
for z = a®, y = b3, 2 = ¢®. Equality occurs fora=b=c = L.
*
5. If a,b, c are non-negative numbers, then
a’?+ b2 +c?42abc+1 > 2(ab + bc+ ca).

Solution. Among the numbers 1 —a, 1 — b and 1 — ¢ there are always two
of them with the same sign; let us say (1 — #)(1 — ¢) > 0. We have

a2+b2+c2+2abc+1—2(ab+bc+ca)=
= (a—1)*+ (b—c)® + 2a + 2abc — 2(ab + ca) =
=(a—1)*+(b—c)2 4+ 2a(1 = b)(1 —¢) > 0.

Equality occurs fora=b=c=1.
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*

6. If a,b,c are distinct real numbers, then

2 b2 2

a N + c > 9
(b—c)? " (c—a)?  (a—bP "7
Solution. Using the well-known identity
be + ca ab _1
a—B(a-c b-ab-a c—aec—0b)
we have
a? N b2 N e ( a b c )2
(b—e)2 " (c—a)? " (a—1b)? b—ete—atay) *
4 2bc 2ca 2ab .
(@a-ba—c) (b—c)(b—a) (c—a}c—b)
a b c \?*
= >
(b—c c—a+a—b) +222
The equality occurs only in the case
a b c
b—c+ c—a+a—-b_0'
*

7. If a, b, ¢ are non-negative numbers, then

(a2 —be)vVb +c+ (b2 —ca)v/e+a+ (2 —ab)va +b>0.

First Solution Letting b+ ¢ =222, c+a=2y* and a + b = 222 (z > 0,
y > 0, z > 0) yields

a=—xtt+yi+ 22, b=x—1y*+2% =22 2 - 2~
The inequality transforms into

xy(23 +1°) +y2(yd +2°) +zz(+23) > L@ +y)+y e (y+2) + 2222 (2 ).

Since zy(z3 + v3) — z2%(z + ¥) = z¥(z + y)(z — y)*, we may write the
inequality in the form

2y(z +¥)(z - v) +yly + Dy — 2 + 22(z )z —2)? 20,
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which is clearly true. For a > b > ¢, equality occurs when either

(a,b,¢) ~ (1,1,1) or (a,b,c) ~ (1,0,0).

Second Solution. If two of a,b, ¢ are zero, then the inequality becomes
equality. Otherwise, we write the inequality in the form

(a? — be)(b + ¢) N (62 — ca)(c + a) N (c2 — ab)(a + b)

>0,
vb+c ve+a va+b -
or X Yz _,
Vb¥ce Veta Vatb T
where

X =(a*—bc)(b+c), Y = (b* —ca)(c+ a), Z=(c* —ab)(a+b).

Consider now, without loss of generality, that a > b > c¢. It is easy to check
that X +Y + 2 =0, X >0and Z <0 Therefore,
X N Y N Zz X _X+Z+ Z
Vb+e Veta Vatb Vhb+c Vete Va+b o
1 1 1 1
SIS N
b+c c+a (=2) ve+a a+b/ T

Third Solution. Write the inequality as

A(a® — be) + B(b? — ca) + C(c? — ab) >0,
where A= +b+e¢, B=+/c+aand C=/a+b We have

22A(a2—bc)=2A{(a—b)(a+c)+(a—c)(a+b)]:
=Y Ala—b)(a+c)+ Y Blb—a)(b+c)=
=3 (a~b)[A(a+c) = Blb+c)] =

A%(a+¢)? — B(b + ¢)?
=2 (a-9) Ala+¢) + B(b +¢)

_(a=b)*(at+ )b+
-2 Aaro+ Bt 20

where " is cyclic over a,b,c.
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8. Ifa,b,c,d are non-negative real numbers, then

a—2=b + b—rc + c—d d—-a >0
at2%+tc broctd ctrodtadts2arb=

Solution, Write first the inequality as
a+2b+c + 2] —

3a+c
§—>
a+2b+c‘4

By the Cauchy-Schwarz Inequality, we have

or

E da+c S [Z(3a+c)]2

a+2b+c™ Y (Ba+c)at2b+c)

Since
Z(Ba—{- ca+2b+c)=4(a+ b—!—c—{-d)2
and \
3 (Ba+0¢)]" —16(a+b+c+d)?,
we get

Z 3da-t-c > 4
at+2b+c
Equality occurs for a=c and b= d.
*
9. Let a,b,c be non-negative numbers such that
A+ +ct=a+b+e.

Prove that
a?b? + b2c% 4 c*a? < ab + bc + ca.

Solution (by Michael Rozenberg) By squaring, from the hypothesis
condition we get

ot + 04+t —a? — b —c? =2(ab+be+ ca — a’b® + b2c? + c*a?).
Therefore, the required inequality is equivalent to

a4+b4+c’42a2+b2+62.
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The homogeneous form of this inequality,
(@a+b+c)(a* + b3 + ) > (% + b7 + ¢2)3,

follows immediately from Holder’s Inequality.

Equality occurs for (a,b,¢) = (1,1,1), for (a,b,¢) = (0,0,0), for
(a,b,¢) = (0,1, 1) or any cyclic permutation, and also for (a, b, c) = (1,0,0)
or any cyclic permutation

10. Let a,b, c be non-negative numbers, no two of them are zero. Then,

a? b2 c?

> 1
a2+ ab+ b? +1)2—{—bc-1—c2 +c2+ca+a2 =
Solution. Let A =a?+ab+ b2, B=0b2 4 be+c?and C = c? + ca+ a®? We

have
(1+% é’)(A %*‘Cg“l):
=Z; 2b2+c _Zl:
=Z(; ) ZLE_”C_*_C_ZA
(55 o)

from which the desired inequality follows. Equality occurs only for a = b = ¢.

*

11. If a,b, ¢ are non-negative numbers, then

a® b3 3
—_ —— > 1.
a3+(b+c)3+ b3+(c+a)3+ c3—{—(a—{—b)3"1

Solution. By the AM-GM Inequality, for z > 0, we have

/__1+x3:\/(1+$)(1_x+x2)_<_(1+x)+(1—x+x2):1+;’f_

Consequently, for a > 0 we get

3
a B 1 . 1 1

= > o=
3+(b+c)3 b+C3“1 1 b+c2—l+b2+62
1+( . ) +§ s a2

2

a
a? b24 2
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The obtamned inequality is clearly true for a = 0 as well. Analogously,

b3 S b? 3 S c*
Bi(cta)P = a?+b2+ 2’ S+(a+bP T a2+ +c2

Adding up these inequalities, the conclusion follows Equality occurs only
fora=b=c

*
12. Let a,b,c be positive numbers and let
E(a,b,c) = ala - b){a—c)+ b{(b—c)(b—a)+ c(c— a)(c—-b).

Prove that:
a) (a+ b+ ¢)E(a,b,c) > ab(a — b)% 4 be(b— ¢)? + ca(c — a)?;

b) 2(%-% %+ %)E'(a,b,c) >(a—b)2 4+ (b—c)?+ (c—a)?
Solution. a) Using the Schur’s Inequality z a?(a—b){a —c) > 0, we have
(a+b+c)E(abe)=Y a*la—b)(a—c)+ Y alb+c)la—b)a—c) 2
>Y a(b+c)(a—b)a—c)=) abla—b)(a—c)+ Y cala—b)la—c)=
=3 abla—b)(a—c)+ ) ablb—c)(b—a) =" ab(a—b)?
b) Since
(ab+bc +ca)) a(a—b)la—c)=
=S abc(a—b)(a—c)+Y_(ab+ac)a(a—b){a—c) =
= abc(a® + b% + c2—ab—bc—ca)+ ) _ be[b(b — c)(b— a)+c(c — a){c—b)] =
= %ach(b—— )2+ 5 be(b + c— a)(b—c)?,
the inequality is equivalent to
Y be(b+c—a)(b—c)* 20
Without loss of generality, assume that @ > b > ¢ Then,
Z be(b+ ¢ —a)(b—¢)? > be(b+c—a)(b— )% + acla + ¢ — b)(a — c)? >

_>_bc(b-{-c—a)(b—c)2+ac(a+c_b)(b_c)2=
=c(b—c)* [(a— b +c(a+b)] 20
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The both inequalities become equality for (a,b,¢) ~ (1,1,1). Notice that
the first inequality is valid for any non-negative a, b, c and becomes again
equality for {a,b,c) ~ (0,1,1) or any cyclic permutation.

*

13. Let a,b,c and z,y, z be real numbers such thata+2 >b+y>c+22>20
and a + b+ c= x4y + 2. Prove that

ay + bx > ac+xz.
Solution. We have

ay+br—ac—zz=qa(y~c)+z(b—2)=ala+b~z~-2)+2(b—2) =

=ala—z)+(e+z)(b—2)=

= S(a=2)* 4 5 (¢ ~2) + (at 2)(b—2) =
:-;-(a—-:c)2+é(a+:r)(a+2b—:r—-2z)—-—'
= %(a—m)2+%(a+x)(b—c+y——z)20,

from which the required inequality follows. Equality occurs fora =z, b = z,
c=yand2x>y+2>0.

*
1
14, Let a,b,c € [f;.’ 3] . Prove that

a+b+c
a+b b4+ec cH+a

7
> —.
-5

Solution. Denote

a + b 4 c
a+b b+c c+a’

E(a,b,¢) =

and assume, without loss of generality, that a = max{a,b,c}. We will show
that

WL~

E(a,b,c) > E (a,b,Vab) >
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We have

E(a1b1 C) - E (a! b'.' ab = o + ¢ - 2\/-5 =
b+c c+a Ja+vb

(AR (VaE-9'
(Va+vb) (b+c)(c+a) ~

. a 1
Let now x = \/; From a,b,c € [§,3],we get z < 3. Hence,

2
E(a,bvVah) — - = —2 4 Wb T 2 2 T
Ja+vb 5 zP+1 z+1 5

5 a+b
_ 3— 7 + 8z% — 213 B (3“$)[$2+(1-—x)2] >0
To5(z4-1)(z2+1) 0 S(z+1)(=241) T

i
Equality occurs for (a,b,c) = (3, 3 1) or any cychc permutation.

*
15. Let a,b,c and x,y,z be non-negative numbers such that
at+bt+cec=x+y+z
Prove that
az(a +z) + by(b + y) + ez{c + 2) > 3(abc + Tyz).
Solution. Applying the Cauchy-Schwarz Inequality to the triples
(avZ,by/F,cvz) and (Vo2 vz, VZU),

we get
(@%z + by + c22)(yz + zz + zy) > zyz(a + b+ c)?

This implies together with
(a-{-b+c)2 = (:r:-{—y-{—z)2 > 3(zy + yz + 2x),

that
a’z + b2y + z > 3zyz

Similarly,
az? + by® + e2° > 3abe

Adding up these inequalities yields the desired result.
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*
16. If a,b, ¢ are non-negative numbers, then
4(a + b+ ¢)® > 27(ab? + be? + ca? + abe)

Solution. Without loss of generality, suppose that a = min{a,b, c}. Setting
b=a+zandc=a+y (z =0,y > 0), the inequality reduces to

9(:7:2 —zy + y2)a + (22 ~ y)2(I +4y) > 0,

which is obviously true. Equality occurs for (a,b,¢) ~ (1,1,1), and also for
(a,b,c) ~(0,1,2) or any cyclic permutation

*

17. Let a,b, c be non-negative numbers such that a + b + ¢ = 3. Prove that

1 1 1
>
2a2+1 2?1 BeaZil >

1.
Solution. The inequality is equivalent to

ab? + be? 4 ca® + 1 > 4a*h3AE.
By the AM-GM Inequality, we have

ab?® + bc? + ca’® > 3abe,

and )
| = (:b_+e) > abe.
3
Then,

ab® +bc® 4 ca? +1-4a%03 > 3abe+ 1 — 4a*h3c3 = (1—abe)(1 4 2abc)? > 0.
Equality occurs fora =b=c = 1.
*

18. If a,b, ¢, d are positive numbers, then

{ 1 1 1 4
>
2rab B ibe  Picd  FidaZacibd
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Solution. Write the inequality as follows

ac + bd
>
(a2+ab )“8’
c+a bld+a)
Z[a+b a(a+b]“>‘8’
b(d+a)>8

c+a
) e D oy
By the AM-GM Inequality, we get

Z:b(d+a,)ﬁ_b(d+a) cla+b) d(b+c)+a(c+d)
ala+b)  ala+b)  blb+c) elc+d)  d(d+a)

Therefore, it remains to show that

c+ a
Z:a+b‘>'4

>4

We have

Zc+adc+a+d+b+a+c b+d
at+b a+b bdec c+d dta

=(a+c)(m+c+d)+(b+d)(a~l+ +bi‘3).
11 4 L

Si > } >
e ot i Gt erd et d b i (at )+ (b+0)

=N

we get

Z:c-{-a> 4(a + c) Ab+d)
a+b~" a+b+ct+d a+btc+d
Equality occurs fora=b=c=d

*

1
19. Ifab,c € [75\/5] then
3 3 3 > 2 2 2
a+2b+b+2c+c+2a_ a+b+b+c+c+a'

Solution. Write the inequality as follows

3 2 1 1
Z(a+2b——a+b+5—@)‘>’0’
(a—b)%(2b— a)
ZGab a+ 2b)(a+b) —
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Since 9
—a>——+2=0,
T V2
the inequality is obviously true Equality occurs for a = b = ¢
*

20. Let a,b,c be non-negative numbers such that ab+ be + ca = 3. Prove

that ! ! {

<1
12 2t Ee s
Solution. The inequality is equivalent to

a’b? + b e + cfa? + a?b®c? > 4.
By setting bc = z, ca = y and ab = z, we have to show that
2 4yt 4 2% 4 zyz > 4,

for z,y,z > O such that z + y + z = 3. Assuming that z = min{z,y, z},
z < 1, we have

:1:2+y2+z2+:ryz—4:121—(y+z)2+yz(:c——2)—42

1
2x2+(y+z)2+Z(y+z)2(fc—2)—4:

g T H+2

o TH2
+4

:%(:c—l)Q(x+2)20

(3—z)2 -4

(y+2)°~d=2

Equality occurs fora = b=c=1.
*

21. Let a,b,c be non-negative real numbers such that ab+bc+ca = 3. Prove

that
1 1 1 3

> —.
a?+ 1 +b2+1 +c2+1 2
First Solution. By expanding, the inequality becomes

a4+ b2 4 2 +3> a’b? + b2 + c*a® + 3a?ble?,
By the AM-GM Inequality, we have

(a+ b+ c)(ab+bc+ca > 9abe,
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that is
a+b+c>3abe

Thus, it suffices to show that
a + b2 4 c% + 3 > a?b® + b2c? + c%a® 4 abc(a+ b+ ¢)
This inequality is equivalent to the homogeneous inequality
(ab+bc+ca)(a2+b2+cz)+(ab+bc-{-ca)2 > 3(a2b2+b2c2+c2a2)+3abc(a+b+c).
We may reduce this inequality to
ab(a? + b2) + be(b? + 2) + ca(c? + a?) > 2(a?? + b%c? + Fa?),
or
ab(a — b)? + be(b— ¢)? + ca(a — b)* > 0,
which is clearly true Equality occurs for (a,b,¢) = (1,1,1), and also for
(a,b,c) = (0, v3,V/3) or any cyclic permutation
Second Solution (by Ho Chung Siu). Without loss of generality, assume
that a = min{a,b,c} From ab+ bc+ ca = 3, we get bc > 1 On the other
hand, from the known inequality

1 1
(ab+bc+ca)( b+E+—)29’

we obtain a + b + ¢ > 3abc The desired inequality follows now by summing
up the following inequalities.

1 1 S 2
b2+1+ 241 " bt 1’
1 1 3
241 T hkeriZd
We have
1 1 2 b(c—b) c(b-c)

b 41 tEF1 bl (b2 + 1){bc + 1) + (c2 + 1)(bc+ 1) -
(b= c)%(bc—1)
T2+ 1)+ )(be+ 1) T

and

1 1 3  a®—bc+3—3a%c _ a(a+ b+ c— 3abe)
Z11 bl 2 a4 be+1) | 20+ 1)(bec+1)
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*

22. Let a,b,c be non-negative numbers such that a? + b + ¢2 = 3. Prove

that ;
a ¢ < L

12 ter2 T ar2 =

Solution. By expanding, the inequality becomes

ab® 4 bc? + ca® < abe + 2.
Without loss of generality, assume that
min{e, b,c} < b < max{a,b,c}
Under this assumption, we have

2 —ab? — bc — ca® 4 abc = 2 — ab? — b(3 — a® — b?) — ca? 4 abc =
= (b° — 3b+ 2)— a(b? — ab+ ca - bc) =
= (b= 1)*(b+2)~a(b—a)(b—c) > 0.

Equality occurs for {(a,b,c) = (1,1,1), and also for (a,b,c) = (0, 1,\/5) or
any cyclic permutation.

*

23. Let a,b, c be positive numbers such that abc = 1. Prove that

a—1 b—1 ¢—-1
a)b+c+a20;

a—1 b-—1 cﬂ1>
b+c+c+a+a+b_

b) 0.

Solution. a) Write the inequality as
ab® +bc* +ca?>a+b+e
Applying the AM-GM Inequality, we get

3(ab? + be? + ca?) = (2ab® + be?) + (2bc? + ca®) + (2ca? + ab?) >
> 3Va2b5¢? 4+ 3Va2b2c5 + 3V a5bic? = 3(b+c+ a).

We have equality fora = b=c = 1.
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b) Write the inequality as follows
S (a—1) [a® + (ab+ be + ca)] 2 0,
Zaa—-Za? +(a+b+c—3){ab+bc+ca)>0

Since a + b + ¢ > 3 (by the AM-GM Inequality), it remains to show that
Z a® — Za2 > 0 We can obtain this inequality applying the AM-GM
Inequality in this manner

0y ® =Y (7T + B+ *) = 3 9Va? b33 =95 d?
*

24. Let a,b,c,d be non-negative numbers such that a®?—ab+4-b? = ¢ —cd+d-.
Prove that
(a +b)(c + d) > 2(ab + cd).

Solution. Let z = a2 — ab 4 b2 = ¢® — cd - d*> Without loss of generality,
suppose that ab > ¢d We have z > ab > cd and

(a+b)2 =z +3ab, (c+d)?=z43cd
By squaring, the desired inequality becomes
(z + 3ab)(z + 3cd) > 4(ab + cd)?
Since = > ab, we get
(z+3ab)(z+3cd)—4(ab+cd)? > dab(ab+3cd)—4(ab+cd)? = dcd(ab—cd) > 0.

Equality occurs for (a, b,c,d) ~ (1,1,1,1), and also for (a,b,c,d) ~ (0,1,1,1)
or any cyclic permutation.

*
95. Let a;, a3, ,an be positive numbers such that ajaa  an = 1. Prove
that ! . ! . ) o
14(rn—1a1 14+ (rn—1a 14 (n—1)a, =

n—1 ) _
First Solution. Letr = o The inequality can be obtained by summing

up the below inequalities for i = 1,2,...,n.

-7
1 a;

2~ =
1+(Tl"—1)ai ay +a2 4+ - +4an

r
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This inequality is equivalent to

i’ + - Halite i+ a2 (n- e
which follows immediately from the AM-GM Inequality. Equality occurs
whena; =ay=- =a,=1.

Second Solution. Let
B 1 1 1
T Da it  tTTim-Da
We will consider two cases.

Case 1 — (n ~ 1)2a;a; < O for all i # j. Since the expression E is
symmetric and ajaz. ap = 1, it suffices to show that

E(al,ag, . ,an)

E(a11023a31-- ,an)ZE(17ala27a31 - :ra"n)

for a; <1 and az > 1. If this assertion is valid, then it is easy to prove (by
contrapositive way) that

E(ay,ag,. .,an} > E(1,1,...,1) =1
We have
E(a17027 -7an)_’E(1,a1a2, . ,an)z

n—l_ 1 —aq . 1 —as .1—(n—1)2a1a2>0
n l+(n—1a 14+(n—1)a 14+ (n—1ajaz —

Case 1 — (n — 1)2a;a; > 0 for a couple (i,7) with i # 7. It suffices to
show that

1 1
> 1.
1+(n—1)ai+ 14+ (n—1)a; —

This inequality is equivalent to 1 — (n — 1)2a;a; > 0.

: : : 1
Third Solution Using the substitution a; = — for all ¢, the inequality

Zj
becomes
x| Ty Tn
+ o — > 1
r1+n—1 =204n-—1 Zp+n—1-""7"
where z1,z3,.. ,z, are positive numbers such that z;z,. .2, = 1. By the

Cauchy-Schwarz Inequality, we have

S (VZL+ VE2+ -+ En)

2
i +n—17 Y (z1+n-1) '
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Thus, we still have to show

(VEL+ VT4 +vE) 2nn—1)+3 1,

which is equivalent to

> yam >

1<i<j<n

Since z1x2 T, = 1, the inequality follows immediately from the AM-GM
Inequality

Tiv1

Fourth Solution Using the substitution a; = forall z, where 21,22, ,Zn

t
are positive numbers (2,4, = 1), the inequality becomes

I 4 z2 T In > 1
1+ (n—1zy 22+ (n—1)x3 Tpn+(n— 1z =7
ot T Ty — I Ty — 2
T] — I 2 — I3 n — 21
+ +- -+ >0
1+ (n—1Dxy a2+ (n—1)x3 Zn+(n— D2y ~

We will prove, by induction over n, a slightly more general statement: f
m>n—1, then

T —x2 Ty — I3 In—T1 |4
T+ mxy Te+ M3 In+mz;
For n = 2, we have
T — T2 zo—a;  (m—1)(z;—2)?

T +mzy Ty +may (214 m)(ze +may) T

Suppose now that the inequality is true for n numbers (n > 2), and let us
prove it for n + 1 numbers. We have to show that

)y — T2 2 — X3 In— Tn+l In+1 — 21

.. >0 (1)
Ty + mry r2+m23 In + Mg Tpyl +MT
form>n
Without loss of generality, consider that zp.; = max{zy, T2, ..,ZTn1}

Since m > n implies m > n — 1, we may use the inductive hypothesis.
So, we still have to prove the inequality

In — Tn4+l Tnyl — T > In— X1
ZTp + MTpel Tnel +MT) ~ Tp + M)
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which is equivalent to

(Zp41 — 1) Ty — a:n)(mzzrl —xz,) 2 0.

Since this inequality is true for m?z, > z,, it suffices to prove (1) for

m?z) < 2,. We write (1) in the form

T T2 Tn T+l n+1
i +mzy To + Mmxj Tp + MTps1 Ipyl + MT m+ 1

and see that

Tn Tn+l
Tn + MTnt1  Tney + mTy
14 Tni1(Tn — m?21) S n+1 .
(mn + mxn-{—l)(mn-{-l + mzy) —m+1

Fifth Solution Suppose that the desired inequality is false, and then show
that the hypothesis ajas ..a, = 1 does not hold. Actually, we will prove
that if

1 1 1

+ R
1+ (n—1ay 1—{—(71—1)(12+ 14+ (n—1)an

<1,

1

then ajas...a, > 1. To do this, let z; = T+m-Da

fori=1,2,...,n.

1 —z;
z for all 1. So we have to show that

Note that 0 < z; < 1 and a; = ——
(n— 1)27,

Ty +z2+ -+ x5 <1 implies
(l—z)1—22) . (1—2z,)>(n— D'z120. .2p.

We can easily prove this inequality using the AM-GM Inequality Indeed,
forall k=1,2,...,n, we have

1—x > ij >{(n—1) . H:rj.
j#k itk

Multiplying these inequalities, the conclusion follows.

*
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26. Let a,b,c,d be non-negative real numbers such that a®>+b*+c? +d? = 1,
Prove that
(1—a)(1 —b)(1—c)(1—d) > abed.

Solution. The desired inequality follows by multiplying the inequalities

(1—a)(1-b) > cd,
(1—c)(1—d) > ab

With regard to the first inequality, we have
ded < ¢ +d* =1—a? — b7,
and hence,

21— a)(1 —b) — 2cd 2‘2(1—a)(1—b)—1+a +b? =
(1—a—b)2>0

The second inequality can be proven similarly.

11 q
,2-2-> arn

lOlH
loIH

The given inequality becomes equality for (a,b, ¢, d) = (
also for (a,b,¢,d) = (1,0,0,0) or any cyclic permutation
*

27. If a,b, ¢ are positive real numbers, then

\/ b c+a
First Solution Setting z = \[5 y = \/: and z = \/. the problem

reduces to show that

1 1 1 3v2
> + + 5 < \,)/_ )
Vita? 142 VItz 2
where z,y,z are positive numbers such that zyz = 1. Assuming that

x = max{z,y,z}, which implies yz < 1, the inequality can be obtained
by summing up the inequalities

1 . 1 < 2
\/1+y2 V22~ JT+yz’

2 2

<3\/_.

Vit itz o
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The first inequality can be proven as follows:

2
1 1 1 1 1 1 - y?z
- + < + =1t =
2<\/1+y2 \/1+z2) 1492 1422 (14+y2)( + 2%
1—y%22 2
(14+yz)2 14yz’

With regard to the second inequality, since

<1+

1 < V2
Vi+ze ~ 1+z’

it suffices to show that

:oloo

1+:c V
We have
3 1 2 1+ 3z / 2x 1+33:—2\/9a:(1+:1:)
2 1+2 1+yz 2(1 + z) 1+ac 2(1 4+ z) -

(\/1—{—1:—\/.,3:) S
= 0
2(1 + ) -

This completes the proof. Equality occurs fora=b=c=1

Second Solution (by Mikhail Leptchinski). Applying the Cauchy-Schwarz
Inequality, for any positive numbers z, vy, z we have

\/ \/ \/ +l+l)(2ax 2by+2cz)
a+b b+c c+a_ Yy oz a+b+b+c c+a

Thus, it suffices to show that

1 1 1 2ax 2by ez
Bl T <9,
(:r+y+z) (a+b+b+c+c+a) =9

1 1
Choosing z = PR V=3 —a and z = pows the inequality becomes as
follows
a b ¢ 9

@ib(ate) " Brobta)  (cra)ctd) ~datbia)’
a(b® + c2) + b(c? + a?) + c(a® + b?) > Babe,
a(b—c)? 4+ b(c — a)® + cla — b)? > 0,

the last being clearly true.
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*

28B. If a,b,c,d are positive real numbers, then

2 2
)+ 63d) () () =0

b ¢
Solution. Setting r = Y= Es g and t = d’ the inequality becomes
1 N 1 + 1 N 1 51
(L+2)2  (1+y)? (14272 1+ 77

where z,vy, z,t are positive numbers such that zyzt = 1. This inequality
follows by summing the inequalities.

1 1 1
>
(1+a:)2+(1+y)2_1+xy’
1 1 1 Ty
> = ;
(1+z)2+(1+t)2_1+zt 1+zy
We have
SRS SN S zy(e® +v¥) —z¥y’ 2y +1 _
(1+2)? " (1+y)? 1ty (1 +2)%(1 +9)%(1 +2y)
2

zy(z — y)* + (1 — ay)?
()21 +y)R(1tay) T

and similarly,

1 S 2t(z —t)? 4 (1 — 2t)?
(1+z)2+(1+t)2 142zt~ (L+2)2(14+8)2(1+42t) =

Equality occurs fora=b=c=d.

*

1 1 1
29. Let a,b, ¢ be positive numbers such that a + b + ¢ = . + -+ = I

b
a<b<e, then
ab’c® > 1
Solution. First we will show that a < 1. Indeed, if a > 1, then 1 < a <
b<c¢and

1 1 1 1—a2 1-5 1-¢
a+b+c———=—-— = a + + <0,
a b b
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which is false On the other hand, from ¢ < 1 and
1 1

_1_ Ly,
¢ a (b+¢c) (bc

it follows that be > 1. Similarly, we can show that ¢ > 1 and ab < 1.
Since be > 1, it suffices to show that abe? > 1. Taking account of ab < 1,

we have

-1 (a+b) (i—1) > 2\/@(i—1) :2(—1——\/5) > L _Vab,
¢ ab = ab Vab = Vab

and hence

(=) (1435 20

which gives us abc? > 1. Equality occurs fora =b=c=1.
*

30. Let a,b, c be non-negative numbers, no two of them are zero. Then

a2+b2+c2>a+b+c
24?2 ct4a? a2+ T bic cta a+b

Solution. Adding up the identities

>  a  abla—b)+acla—c)
b2+¢2 b+e (b2+c2)(b+c) ’

b? b be(b—c) 4 ba(b — a)
2+a? c+a (2 +a)(cta)

c? c ca(c — a) + cb(c — b)

2+b2 a+b (a? -+ b2)(a + b)

= c(b— ¢ ! - 1 -
2 befd )[(c2+a2)(c+a) (02+b2)(a+b)]—
be(b — ¢)? S
(a? +82)(a2 + ¢?)(a+ b)(a+c) = -

=(a2+b2+c2+ab—i—bc+ca)z

Equality occurs for (a,b,c) ~ (1,1, 1), and also for (a,b,¢) ~ (0,1,1) or any
cyclic permutation.
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*

31. If a,b, c are non-negative numbers, then

2(a? + 1)(0* + 1)(c* + 1) > (a+1)(b + 1)(c + 1)(abe + 1)
First Solution. For a = b = ¢, the inequality reduces to

2(a +13 > (a+ 1)@ +1)

This inequality is true since

2a® +1)° —(a+ 1%+ 1) =(a-D)*(a® +a+1)>0
Multiplying now the inequalities

3> (a4 1)3(a,3 + 1),
2(b2+1) > (b+ 13 4 1),
3> e+ 133+,

we get
8(a® + 13 (0% + 132 + 1) > (e + 13 (b + 1)3(c + 1)3(® + 1)(B® + 1)(c* + 1).
Using this result, we still have to show that
(@®+ D)3+ 1)(* +1) > (abe +1)°
This inequality follows by Holder’s Inequality
(3 +1)(0° + 1)(3 +1) 2 (VT3S + YT 1-1) = (abe +1)%,
but it can be also invoking the AM-GM Inequality Write the inequality as
(@33 + 83¢® + c®a® — 3ab%c?) + (a® + b3 + & — Babe) > 0

and notice that 363 +b3¢3 +c3a3 > 3a2b2¢? and @3 +b3 + ¢ > 3abe Equality
oceurs fora=b=c=1.
Second Solution (by Marian Tetiva). We will use the substitution

11—z 11—y 1-2
1+2°
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where —1 < z,y,2z < 1. Since

a*+1 2?41 B24+1 i+l 41 241
a+1 z+1" b+1 y+1° c+1 241

and
2zy +yz + 2z + 1)

abe+1= (z+D{y+1)(z+1)’

the inequality becomes

(+ DA+ D)2+ D) > 2y +yz + 2z + 1,
2iy? + y?2? 4 2% 2?4y + 2 > ry +yz 4+ 2n,
1 1 1
2yt +y'2t + 2% 4 (2 - )? 4 Sl -2 (22 20

The last form is clearly true for any real numbers z,y, z. Consequently, the
given inequality is also valid for any real numbers a, b, c.

*

32. If a,b,c are non-negative numbers, then
3(1—a+a?)(1 —b+ b)) (1 —c+ %) > 1+ abe + a?b?c?.
Solution. From the identity
2l —a+a®)(1—b+b%) =14+a?? + (a — )% + (1 —a)?(1 —b)%,
the inequality follows
2(1—a+a®)(1 —b+b%) > 1+ o
Thus, it is crough to prove that
3(1 + a?b?)(1 — ¢+ €?) > 2(1 + abe + a?b?c?).
This inequality is equivalent to
(34 a??)c? — (3 + 2ab + 3a%b)c + 1 + 3a%b2 > 0
It is true because the quadratic in ¢ has the discriminant
D=-3(1-ab)’ <o

Equality occurs fora =b=c¢ = 1.
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*
33. If a,b,c,d are non-negative numbers, then
2
(1—a+a)1—-b+b)(1—c+H(1-d+d*) > (1 +;‘b°d) .

Solution. For a = b = ¢ = d, the inequality reduces to
2(1—a—{—a,2)2 >1 + a?
This inequality is valid since
20—a+a®)?-1-a'=(1-0a)*>0.
Using this result, we have
4(1—a+a®)?(1 —b+b1)2 > (14 a*)(1 +b*).
Since (1 + a)(1 + %) > (1 + a?b?)?, we get
2(1 — a+ a®)(1 — b+ b%) > 1 + a?b?.
The desired inequality follows now by multiplying the inequalities
21 —a+a?)(1 —b+b?) > 1+ a?b?,
21 —c+c?)(1 —d+d?) > 1+ 2d?,
(1 + a?%)(1 + 2d?) > (1 + abed)?
Equality occurs fora=b=c=d =1
*
34. If a,b, ¢ are non-negative numbers, then
(a2 + ab + b?)(B? + be + 2)(c? + ca + a®) > (ab+ be + ca)®.
Solution. We have
4(a? + ab + b?) —3(a+ b)2 = (a - b)* 2 0.
Multiplying the inequalities
4(a® + ab+b?) > 3(a + b)?,
4(b + be + ¢) 2 3(b + c)?,
4(c? + ca+ a?) > 3(c + a)?,
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we get
64(a® + ab + b*)(b* + be + )(c? + ca+a?) > 27(a + b)*(b + ¢)%(c + a)®.
Thus, it suffices to show that
27(a + b)2(b + ¢)%(c + a)? > 64(ab + bc + ca)®.
Since 3(ab + be + ca) < (a + b + ¢)?, it is enough to prove that
81(a + b)2(b + c)*(c+ a)? > 64(a + b + c)?(ab + be + ca)?.

This inequality is equivalent to

a+b)(b+c)(c+a)=8(a+b+c)(ab+ be+ ca),
which reduces to the obvious inequality

a(b —c)? +b(c—a)? + c(a—b)? > 0.

Equality occurs for (a,b,c) ~ (1,1,1), and also for (a,b,c) ~ (1,0,0) or any
cyclic permutation.

Remark Kee-Wai Lau found out the following nice identity-
(a® + ab + b2) (b2 + be + cA)(c? + ca +a®) — (ab + be+ ca)? =
1 2 2, 1 2% 2 2
_§(ab+bc+ca) Z(b—-c) + -é-(a+b+c) Za (b—¢)",
which shows that the given inequality holds for any real numbers a,b,c

*

35. Let a,b,c,d be positive numbers such that abed = 1. Prove that

1 1 1

< 1.
14+ ab+4bec+ca + 14+bc+cd+db + 14+cd+datac + 1+da+ab+bd — !

Solution. We have

1 1 1. 1 1 1 -
-t > =
ctrt 2ttt o = Via(Va+vh Ve,
whence
ve+ Vb + /e

ab+ bc+ ca >

Vd
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and
1 vd
1+ab+bc+ca Ve+Vb+ e+ Vd
Similarly,
1 Va
1+bc+cd+dc Va+Vbh+e+Vd'
1 < vb
1+cd+datac™ Ja+Vb+Je+Vd’
1 NG

1+da+ab+bd Va+vVh+ e+ Vd

Adding up these inequalities yields the conclusion. Equality occurs for
a=b=c=d=1.

*

36. Ifa,b,c and z,y, z are real numbers, then

4(a? + %) (6% + ¥?)(c* + 2°) > 3(bex + cay + abz)?.
Solution. By the Cauchy-Schwarz Inequality, we have

(a? + z7) [(cy + b2)* + b°¢?] > [a(cy + b2) + bex)?.
Thus, we still have to show that

4(b% + y2)(c? + 22) 2 3 [(ey + bz)? + 677
This inequality reduces to
(cy — b2)? + (be — 2y2)° 2 0,

which is clearly true. In the case abe # 0, equality holds for

I
ol N
I

SES

&R
]
o
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37. Ifa>2b>c>d>e, then
(a+b+c+d+e)? > 8(ac+ bd + ce).

For e > 0, determine when equality occurs.

Solution. We have

(a+b+c+d+e)?—8ac+ bd+ce) =
=(a+btc+dte—4c)®+8(a+b+c+d+e)c—16c2—8(ac+ bd + ce) =
=(a4+btc+dte—4c)2+8(b—-c)c—-d)>0.

From here the desired inequality follows. Equality occurs for either

a+d+e at+bte

b=c= — —orc= d = —5 For e > 0, the equality condi-
. at+b+te : . .
tionsc=d=———yielde =0and a = b = ¢ = d Since this case is
included in the first equality case, we can conclude that equality occurs only

at+d+te
forb=c¢c= ——.

2
*

38. Ifa,b,c,d are real numbers, then
6(a® + 82+ P+ &) + (a+ b+ c+d)? > 12(ab + be + cd).
First Solution. Let
E(a,b,c,d) =6(a® + b+ c* + d°) + (a + b+ ¢ + d)? — 12(ab + be +- cd).
We have

E(zta,z+bz+c,z+d) =4z +4(2a —b—-c+ 2d)z+
+7(a® + 6% + ¢ + d%) + 2(ac + ad + bd) — 10(ab + be + cd) =
= (22 + 2a — b —c + 2d)*+

+3(a® +26° + 2¢% + % — 2ab + 2ac — 2ad — 4bc + 2bd — 2cd) =
=2z +2a—b—-c+2d)? +3(b—c)®+3(a—b+c—d)

For z = 0, we get

E(a,b,c,d) =(2a—b—c+2d)2-{—3(.!;-—c)2 +3(a-b+c—-d)?>0.
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Equality occurs for2a =b=c = 2d

Second solution Let a =b+ x and d = ¢+ y. We have

E(a,b,e,d) = 6(z® + ) + [z +y +2(b+ c)*|* — 12bc =
= 3(z—y)? + 4(z+y)? + 4z +y)(b+¢) + (b+c)* +3(b—c)® =
=3z —-y)°+ 2z +2y+b+c)’+3(b—-c)? >0

*

39. If a,b,c are positive numbers, then

\/(a+b+c) (% 1 % +%) >1+ \/1 + \/(a2+62+c2)( 5+ ,,12 t3 )

Solution. (by Gabrel Dospinescu). Using the Cauchy-Schwarz Inequality,

we have
(S (1) - J(Zamzr»c)(z +2% ) >
(£ (S ) +2 (50 () -
=\F2a2 ; +2\/(Za) (2-2 ,

and hence

(\/(Za) (T1)- 1)2 > 1+\[(Za2) (T L),

From this mequality, the conclusion immediately follows. Equality occurs if

(Fe?) ()= (X 5) (T,

which is equivalent to

and only if

(@® — be)(b? — ca)(c? — ab) =
Consequently, equality occurs for a2 = be, or b = ca, or ¢? =ab

*



1 2 Solutions

40. If a,b,c,d are positive numbers, then

1 1 1 1 1 1
. 2 2 2 — ) =2> (_ _ _)_
54 \/Q(a +b +c)( tpts ) 2>(a+b+c) -+t
e b ¢ b ¢ a
Solution. etz = -+ -4+ — andy = —+ -+ —. We have
b ¢ a a b ¢
1 1 1
(a+b+c)(—+—+—)=m+y+3
a b ¢
and
1 1 1
2, 524 A2 —
2(a® + b +C)(;+b_2+?)_2_-
a?  p* P ¥ ? a?
= 22" -2+ 200"~ 20) +d=(z+y-2)" + (z - y)* 2 (z + y - 2)°
Therefore, i

11 11 1
2 2 2 — —9 = - -— N
\/Q(a FP ) () ~22ahy=2 (a+b+c)(a+b+c)

Equality occurs if and only f a = b,orb=c,orc=a

*

41. If a,b,c,d are positive numbers, then
a—b+b—c+c—d+d—a>0
b+c c¢c+d d+a a+b”

Solution. We have

a—b c¢c—d a+4c a+c
b+c+d+a_b#c+d+a

1 1
_2_(a+c)(b+c+d+a)_2'

Since
1 1 4

>
b+c+d+a_ (b+ec)+(d+a)’

we get

a—b c—d> 4(a + ¢)
b+c d4+a " a+b+c+d
Adding this inequality to the similar inequality
b—c+d—a> Ab+d)
c+d a+b " a+b+c+d

1
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we find the desired inequality Equality holds if and only if a = c and b = d.

Congecture. If a,b, ¢, d are positive numbers, then

a—b+b—c+c—d+d—e+e—a>0
b+c¢c c+d d+e e+a a+bdbT

*

42, If a,b,c > —1, then

1+4a? 1482 14 c?
7+ 5+ =
1+b+¢ l14+c+a 14+a+b

2

. o o 10
Solution. Wehave 1+b+c¢*>14b>0,14+b+c° < +1+4¢c% and

2

hence

1+ a? S 2(1 + a?)
1+b+c? T 1462+2(14+¢2)

Setting z =1+a?, y =14 b, z=1+¢?, it suffices to show that

R TS
y+2z z4+2x z+2y T
Using the Cauchy-Schwarz Inequality, we have
ST T S TT S
y+2z 242z 42y T z(y+22) +y(z+2z)+ 2(z + 2y)
_ (zty+2)
3zxy +yz+2x) —

Equality occurs if and only ifa =b=c=1.
*
43. Let a,b,c and z,y,z be positive real numbers such that
(a+b+c)(z+y+z)=(a®+b*+ ) +y*+2°) =4

Prove that

aberyz < T
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Solution. Using the given relations and the AM-GM Inequality, we have

4(ab + bec + ca)(zy + yz + 2z) =

[(a+b+c)2—(a2+b2+c2)] [(:r+y+z)2—(mg+y2+z2)] =
20— (a+b+e)}(z+y¥ +2Y) —(z+y+2)(a® 4+ +P) <
20 - 2(a+ b+ c)(z +y + 2)/(a® + b2 + ¢2)(z2 + y? + 22) = 4,

fl

I

IA

therefore
(ab + be + ca)(zy + yz + 2z) < 1.

On the other hand, multiplying the well-known inequalities

(ab + bc + ca)? > 3abe{a+ b+ ¢),
(zy + yz + 22)° > 3zyz(z + y + 2),

we get
(ab + be + ca)?(zy + vz + zz)* > 36abezye.

Thus,
1> (ab + be+ ca)?(zy + yz + 2z)? > 36abezyz.

To have 1 = 36abexyz, it is necessary to have (ab+bc+ca)? = 3abe(a+b+c)
and (zy + yz + 2z)? = 3zyz(z 4+ y + z). But these equalities imply a = b = ¢
and £ = y = z, which contradict the hypothesis

(a+b+c)(zt+y+2)=(a®+b*+) (2 +y° +22) =4
Consequently, we have 1 > 36abczyz

*
44. Let a,b, c be positive numbers such that a? + b2 + ¢? = 3. Prove that

a2+ B4t c?4 a2
a+b b+ ¢ c+a

> 3.

Solution. Write the inequality as follows
¥+ b+e
s (=9 (@0t (b= 4 (c—aP
2b+¢c) ” \/3a?+ b2+ +a+btc
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Since /3(aZ + b2 + c2) > a+ b+ c, it suffices to show that

(b —c)? (a—-b)2+(b—-c)2+(c—a)2-

>
2(b+c) — 2(a+b+c)
This inequality is equivalent to:
S a4 (b—c)? >0,

b+c

which is clearly true Equality occurs fora =b=c¢=1.

*

45. Let a,b,c be non-negative numbers, no two of which are zero. Prove that

1 1 1 3
> ]
a2+bc+b2+ca+c2+ab_ab+bc+ca

Solution. Since
ab+bctca a(b+ c—a)

a?+be T e
we may write the inequality as
a(b+c—a) + b(c+a—1b) + cla+b-c)
a? + be b2 + ca c? + ab

>0

Assume that a < b < c. Since b+ ¢ — a > 0, it suffices to show that

blcta—b) clatb—c)
>0
b2 + ca c2+ab T

This inequality is equivalent to
(6% + ®)a® — (b + c)}(b® — 3bc + ¢®)a + be(b —c)* 2 0.
It is true because

(6% + ¢*)a? — (b+ c)(b® — 3bc + c*)a + be(b — ¢)* =

= (b2 + ¢ — 2be)a® — (b + c)(b? —2bc + c*)a + be(b—c)? + abe(2a + b+ ¢) =
= (b—c)*(a—b)(a—c)+abc(2a+b+c) >0

Equality occurs for {(a,b,c) ~ (0,1,1) or any cyclic permutation.

*
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46, Let a,b, c be non-negative numbers, no two of which are zero. Prove that

1 1 1 3
> .
b% — be + ¢2 +c2—ca+a2 +a2—ab+b2 ~ab+4bc+ca

Solution. Denote

Ela b _ab+bc+ca ab+bec+ca ab+bcHca
(a, ’C)_bz—bc+c2 2 —ca+a?  a?—-ab+4 b2’

We first assume that a < b < ¢, and then show that

E{a,b,c) > E(0,b,c) > 0.

We have
_a(btc) a(c?+2bc—ab) = a(b?+2bc—ac)
E(a,b,c)—E(0,b,¢c) = bt & Z ot bt 2
a(b+¢) a(bc — ab) a(bc — ac) >0
“b2—bc+c? cP—cata? a?—ab+d2 T
and
be b ¢ (b —c)?
8= 424 g
E(0,b,¢) b2 — bc + c? + c+b be(b? — be + ¢?)
Equality occurs for (a,b,¢) ~ (0,1, 1) or any cyclic permutation.
*
47. Let a,b, c be positive numbers such that a + b+ ¢ = 3. Prove that
12

b _>5
ac+ab+bc+ca -

Solution. By the third degree Schur’s Inequality
(a+b+c)®+9abe > 4(a + b+ c)(ab + be + ca),

we get 3abc > 4(ab + be + ca) — 9. Thus, it suffices to show that

36
4(ab + b - —_ > 15,
(ab + be + ca) g+ab+bc+ca_15

This inequality is equivalent to
(ab+ bc + ca —-3)% > 0,

which is clearly true. Equality occurs for (a,b,¢) =(1,1,1 .
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*

48. Let a,b,c be non-negative numbers such that a? + b? + ¢ = 3. Prove
that

12 + 9abe > T(ab + be + ca).

Solution. Let s =a 4 b+ ¢. Since

(a+b+c)?—(a®+b2+c?) s*-3

b = =
ab+bc+ ca 5 5

the inequality becomes
45 + 18abc — 752 > 0.
On the other hand, by Schur’s Inequality

(a+b+c)® 4+ 9abc > 4(a + b + c)(ab + be + ca),

we get
53 + 9abc > 2s(s® — 3),
that is
9gbc > 53 — 6s.
Then,

45 + 18abc — 7s? > 45 + 2(s3 — 6s) — 7s% = (5 - 3)%(25 + 5) > 0.

Equality holds if and only if (a,b,c) = (1,1,1).

Remark. From the proof above, the identity follows for a?+ b+ =3

5
124+9abc—T(ab+bctca) = a(a—b)(a—c)+(a+btc—3)* (a +b+c+ §) :

*

49. Let a,b, c be non-negative numbers such that ab + bc + ca = 3. Prove

that
a3 + b + & + Tabe > 10.

Solution. Let s = a + b+ ¢. From the well-known inequality

(a+ b+ c)? > 3(ab+ bc+ ca),
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we get s > 3. Since

A+ 4+ =3abc+ (a+b+c)*—3(ab+ bet ca)(at+b+c)=
= 3abe + % — 9s,

the inequality becomes
10abc + 3 — 9s — 10 > 0.
This inequality is true for s > 4, because
$2—95-10>165-9s—10=75—-10>0
Consider now that 3 < s < 4. By Schur’s Inequality
(a+ b+ c)® + 9abe > 4(ab + bc + ca)(a + b + ¢),

we obtain
9abe > 125 — s°.

Thus, we have

> 10(12s — s%)

10abc+53—93—10__ +583-9s5—10=
_ —5%439s—90  (s—3)(30 —s%—3s)
= 5 = 3 =
—3) (16 — 5?) + 3(4 — 2
_loyfus-isu-g49 o
9 2
which completes the proof. Equality occurs if and only if a = b= ¢ = 1.

*

50. If a,b,c are positive numbers such that abc = 1, then
(a+d)(b+c)cta)+7>5(a+b+c)
Solutjon. Assume that a = max{a,b,c} and denote b + ¢ = z. We have

2
aZl,xZva =Tand
a

E=(a+b)(btec)cta)+7—5(a+tb+c) =
:x(a:c+a2+bc)+7—5a—5w=ax2+(a2+bc—5):c+7—5a=

9 2
za($+a +bc—-5) B (az+bc~--5)2

2a 4a +7—>5a
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Since
- _ a?+--5
a“ 4 be 2_2__}_a + be E+ a _
2a va 2a T a 2a
1 1
E(a +—“"1) 0
. . 2
it suffices to consider = —. In this case, we have
' va’'
E:az2+(a2+bc—5):c+7—5a:=2(a2+l—5)—1-+11—5a
a va

Setting t = +/a, t > 1, yields

1 5 26 — 5¢° 4 1113 — 1062 + 2
E>2(r3 —*—) — 51 = =
> + 377 + 11 t 3
N VR e e o e ) S (- 1)2(2t* — 3 — 4¢% + 3t)
B (t—1)*(2t + 3)
- >

> 0.

Equality occurs if and only if a=b=c= 1.
*
51. Leta,b,c be non-negative numbers, no two of which are zero. Prove that
a’ n b3 N 3 < 1
(2a2+b2)(2a2+c?) © (2624c2)(26%+a?)  (2c2+a?)(2c2+b%) T atbte
Solution. The inequality follows by summing the inequalities
a? < 1
(2a2 + 62)(2a2 + c2) ~ (a+b+¢)?’
b? < 1
(202 + c?)(202 + a?) ~ (a+b+e)?’
c? < 1
(2¢2 + a2)(2¢2 +62) ~ (a+b+c)?’
multiplied by a,b and ¢, respectively These inequalities directly follow by
the Cauchy-Schwarz Inequality. For example, from

(a2 + a® + b*)(* + a® 4 a?) > (ac + a® + ba)?,

the first inequality follows. Equality occurs if and only ifa=b=c
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*

52. Let a,b,c be non-negative numbers such that a + b+ ¢ > 3. Prove that

S U SR
a?+b+e a+bi+e a+bte2

Solution. It 1s easy to check that it suffices to consider a + b+ ¢ = 3. In
this case, we may write the inequality in the form

1 1 1

<1
c12—a+3+b?—b+3+c2*c+3‘1

We can prove this inequality by adding the inequalities

1 4—aq 1 44— 1 4—¢
< < < .
a?—a+3~ 90 Tbh2—-b4+3~ 9 ’c2—c43— 9

We notice that

a1 -1 _(e- 1049,
9 a-at3 o —a+3) Ya-a+t3)

Equality occurs if and only ifa = b =c = 1.
*

53. Let a,b,c be non-negative numbers such that ab+ be+ca=3. Ifr > 1,

then
1 1 1 3

< .
r+a? + b2 +r+b2+c2 + r+c2+a? = r42
Solution (by Pham Kim Hung). Since

r 1 b2 4 ¢2
T+ T r b2 4R

we may write the inequality as

T b2 + ¢2 . _6
r+b24e2 = r497
On the other hand

and

b? + 2 o _ (b+e)?
r+b24+c? T 2r4(bte?’



54 1 Warm-up problem set

Thus, it suffices to show that

2r+(b+c “r42

By the Cauchy-Schwarz Inequality, we have

b+c ll((l-}-f)—l—c)2
> >
w4 (bt T 6r+ > (b+c)?
_ 2a + b+ ¢)? _
T a4+ R+ 4 (r+ Diab+betca)
6 +r—1' 2(a? + b? 4 ¢ — ab — bc — ca)
r+2 r+42 a24+b24+c24(r+1)(ab+bc+ca) T

6
>
T r42

Equality occurs if and only f a=b=c=1.

*
54. Let a,b,c be positive numbers such that abc = 1. Prove that

SRS SRS S 5 o
(14a)3  (1+b)3 " (1+¢)?  (I+a)(l+b)(1+e) ™

1 1 1
= = S = d
14+a’ y 1+b 1+c rty+zan

Q = zy + yz + zz, where 0 < z,y,z < 1. The hypothesis abc = 1 becomes
zyz = (1 —z)(1—y)(1 — 2), that is 2zyz = 1 — S + Q, while the required

inequality transforms into z® + y3 + 22 + 5zyz > 1. That is

Solution. Set z =

8ryz + S -35Q > 1,

or
53 —-45+3>(35—4)Q.
S2
We have to prove the last inequality for S—1<Q < 5 The left hand side

condition follows from 2zyz = 1— S +Q, while the right hand side condition

is well-known. We will consider three cases.
Case S <1 We have

$3 - 4S+3=(1-8)(3-5-5%20>(35—-4)Q
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4
Case l < S < 3 We have

S3-45+3—(85-4)Q>8%-45+3—-(85-4)(S~1)=(S—1)%>0.

Case S > —. We have

(2L =N

52 (28 -3)?
53—4S+3—(3S-—4)Q2S3—4S+3—(3S—4)—3—:L—g——)zo.
Equality occurs if and only if a = b=1¢ = 1.

*

55. Let a, b, c be positive numbers such that abc = 1. Prove that

2 +1 > 3
at+b+c 3 " ab+be+ca’
ab+ b a at+ b+
Solution. Let » = -+—3€:—{_i and s = ——~—3—c By the AM-GM

Inequality, we get

u> vVab-bc-ca=1.

On the other hand, the third degree Schur’s Inequality states
(z+y+ 2) + 9zy=2 24z +y+2)(zy+ yz + 2x)

for any non-negative numbers z,y,z. Substituting z,y,z by be, ca, ab,
respectively, we get

(ab+ be + ca)3+ 9> 4(ab+ be+ ca)(a+ b+ ¢),

which is equivalent to

3ud + 1> 4us.
Therefore,
6 g 2 3 8u 3
_ ] _Z -2 _— =
a+b+c+ ab+ bc+ ca s+1 u_3u3+1+ u

_ Sut —9ud + 842 4 u—3 _ (u-—l)(3u3—6u2+2u+3)
u(3u3 + 1) - u(3u3 + 1)
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Since u > 1, we have to show that 3u® ~ 6u? +2u+ 3 > 0. For u > 2, we
have

3u3—6u2+2u+3>3u3—6u2=3u2(u--2)20,

and for 1 < u < 2, we have
30 —6u? + u+3=3u(u—12+3—-u>0
Equality occurs if and only ifa=b=c=1

*

56. If a,b,c are real numbers, then

2(1 + abe) + v/2(1 + a?)(1 + b2)(1 + ¢2) > (1 + a)(1 + b)(1 + ¢).

Solution. Using the substitution u = a4 b+-c, v = ab+be+ ca and w = abe,
the inequality becomes

V2wl 42 4wl —2wu—2v+1)2utv-w—1
It suffices to show that
2(u? + v* + w? —2wu—2w+1) > (ut+v—w—1)>
This inequality is equivalent to
w2 +v? + w? —2uv + 2ow—2wu + 2u—w—-2w+120,

or
(u—v—w+1)2 >0

Equality occurs if and only f u —v—w+1=0and u +v—w—120.
*
57. Let a,b,c be non-negative numbers, no two of which are zero. Prove that

a(b+c) b(c+a)+c(a+b)>9
a2 +be  b4eca  24ab T
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Solution (by Pham Van Thuam). Assume that a > b > c and write the
inequality as

b(c + a) > (a—b)a—c) (a—c)(b—c)

b> 4+ ca ~ a? + be c2 + ab
Since

(a—b)(a—c)<(a—b)a<a—b
a? + be — al4be ~ a

e (a=c)b—¢) _alb—c) _ b
a—c)(b—c alb—ec -

< <
c24+ab T c24ab " b

it suffices to show that

blc+a) _a—b b—c
> .
b24+ca = a t b

This inequality is equivalent to
b%(a — b)? — 2abc(a — b) + a®c? + ab*c > 0

or
(ab— b2 — ac)? + ab’c > 0.

Under the assumption a > b > ¢, equality occurs if and only if a = b and
c=0.

*

58. Let a,b,c be non-negative numbers, no two of which are zero. Prove that
a(b+ c) \/b(c+ a) \/c(a+ b)
> 2.
\/a2+bc + b2 + ca t c® + ab 22
First Solution By squaring, the inequality becomes
a(b+ ¢) be(a + b)(a + ¢)
>
Z a2+bc Z\/(W—i—ca (c? + ab) 4
Taking into account the preceding inequality, it suffices to show that

Z be(a + b)(a + ¢) > 1
(b2 +ca)(c? +ab =




58 1 Warm-up problem set

Squaring again, it is enough to prove that

be(a+ b)(a+ ¢)
LT @ ab) >

We have
Z c(a+b)(a+c) >Z be(a? + be)
(b2 + ca)(c? + ab) (b2 4 ca)(c? + ab)
4a%b*c? > 1
(a2 4 be)(b2 + ca)(c? + ab) —

Under the assumption a > b > ¢, equality occurs if and only if a = b and
c=0

Second Solution (by Mink Can). Using the AM-GM Inequality, we have

a(b+c) _ a(b+¢) S 2a(b+ ¢) _
a? + be V(@ + be)(ab + be) (@2 + be) + (ab + be)

_ 2a(b+0)

~ (a+b)(c+a)

Thus, it suffices to show that
a(b+ c)? + b(c+ a)? + c(a+b)? > (a+b)(b+ ¢)(c+ a)

This inequality is true, because it reduces to 4abc > 0.

*

59. Let a,b,c be non-negative numbers, no two of which are zero. Prove that

1 . 1 1 > a N b 4 ¢
b+c c+a+a+b_a2+bc b24ca 2+ ab

First Solution (by Michael Rozenberg) Without loss of generality, assume
that a = min{a,b,¢} We have

(a—b)(a—c)

1 a 1
Zm—za2+bczz(b+c a2+bc) Z(b+c (a2 + be)

Since (a — b)(a — ¢) > 0, it suffices to show that

b-b=a) , (c=a)e—H
(c+ a)(b2 4 ca)  (a+b)(c?+ab) —
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This inequality is equivalent to
(b—c) [(b* — a®)(c® + ab) + (a® — c*)(b* + ca)] > 0

or
alb— )2 (b2 4+ ¢ — a® + ab + be + ca) > 0
The last inequality is clearly true for @ = min{a,b,c} Equality occurs if
and only ifa=b=c.
Second Solution (by Dariy Grinberg) According to the identity
L 1 1 sye—y)+(l—ay)’
(1+z)2 (1+4+y)? l+zy (14221 +y)2(1 +zy)

(used also in the proof of problem 28), we have

1 I be(b— ¢)? 4 (a® — bc)? >0
(@+52 " {atec? aibe  (atb)(ate)i(a+bd) >

Using this inequality, we get
Z—l“Z[ b L a
b+e (b+¢c)? (b+c)]_z( ) Z:(c+a)2—

"X [(a+b) (a+c ]

*

60. Let a,b,c be non-negative numbers, no two of which are zero. Prove that

1 N 1 N 1 S 2a N 2b N 2¢
b+c c+a a+b73a2+be 324+ca 3c2+ab

Solution. Since

1 2a B 1 2a
Zb+c_z3a,2+bc_zj(m_3«:1,24-bc) -
Z(a—b(a-—c)—i—4{1(2@1——!)—c)
(b+ c)(3a? + be)

*Z (a—b)(a—c) +Z a(2a—-b-c) ,
(b + ¢)(3a? + be) (b+ ¢)(3a2 + be)
we can obtain the desired inequality by summing the inequalities

(a —b) )(a—c)
>
Z(b+c (3a? + be) = 0
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and
a(2a—b—c)

= 0.
2 (b + c)(3a? + be) ~ 0
To prove the first inequality, assume that e = min{a,b,c}  Since
(a—b)(a —¢) > 0, it suffices to show that
(b—¢)(b—a) (c—a)(c—b)
(c +a)(3b2 4 ca) ' (a+b)(3c2 +ab) ~

This mequality is equivalent to
(b—c) [(b* = a®)(3c* + ab) + (a® — *)(3b% + ¢ca)| 2 0

or

a(b—c)?(b? + ¢ —a? + 3ab + bc 4 3ca) > 0

The last inequality clearly occurs for a = nun{a, b, ¢}
To prove the second inequality, we have

a(2a—b—c) a(a — b) a(a — c) B
2 (b+ c)(3a? + bc) 2 (b + ¢)(3a® + bc) + Z (b+ ¢)(3a2 + be)
a(a — b) b(b — a)

- Z (b+ ¢)(3a? + be) + Z (¢ 4 a)(3b% 4 ca) -

a b

— Z(a—-—b) [(b-{— c)(3a2+bc) - (c+a)(3b2+ca)] =
c(a — b)? [(a —b)2 4 cla+ b)]

— Z (b + o)(c + a)(3a2 + be)(3b + ca) >

Equality occurs if and only ifa=b=c¢
*

61. Let a,b, ¢ be positive numbers such that a’+4 b2 +c? =3 Prove that
3
5 — > 18.
(at+btec)+——2

Solution. Let p = a+ b+ ¢ and g = ab -+ bc + ca. From a? + b? 4 ¢ = 3 we
get p? = 2¢ + 3, p > /3, while from the well-known inequality

(ab+ be+ ca)? > 3abe(a+ b+ ¢)

we obtain {
>
abc — g

Lo
Nl g
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Thus. it suffices to show that

op A 9—‘;) > 18
q
Smce
9p 36p
5p4+ = —18=5p f ———— — 18 =
Py (0% —3)?
_ 5p° —18p! — 30p° + 108p* + 81p— 162
- (- 3)? -
_ (p—3)%(5p° + 12p* — 3p—18)
B (p® - 3)? ’

we still have to show that 5p® + 12p% — 3p — 18 > 0 Taking into account
that p > /3, we get
53:934—1'27)2—330—18:*192 (5p+ 12——%—-;—3) >
>p (5v3 12~ V3 -6) >0
Equality occurs if and ouly ifa = b= ¢
*

62, Let a,b,c be non-negative numbers such that a + b+ ¢ = 3. Prove that

1 + 1 n l <§
6—-ab 6-—-bc 6-—ca 5

Solution. By expanding, the inequality becomes
108 — 48(ab + bc+ ca) + 13abe(a + b + ¢) — 3a°b?c? > 0,

or
4{9 — 4(ab + be + ca) + 3abc) 4+ abe(l — abe) > 0.

By the AM-GM Inequality, we have

[ = (CH b+ ¢

3
3 ) > abe

Consequently, it suffices to show that

9 —4(ab+ be+ ca) + 3abe >0
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This inequality has the homogeneous form
(a+ b4+ ¢)® + 9abe > 4(a+ b + c)(ab + be + ca),

which is just Schur's Inequality of third degree.

3
Equality occurs fora=b=c=1,aswe]lasfora:Oandb=c=§,b=0

3
andc=a:§,,c=Oanda:b=§
Remark Actually, the following inequality holds
1 1 1 3
<

p—ab+p-bc+p—ca"p—1

for a,b,c non-negative numbers such that a + b+ ¢ = 3 and p > 6. This
imequality is equivalent to

?[3p — (p+ 2)(ab + bc + ca) + 6abc] + 3abe(1 — abe) > 0.
Since 1 — abe > 0, the inequality is true if

3p—(p+ 2)(ab + bc+ ca) + 6abe > 0

or
(p—6)(3 — ab— be — ca) + 18 — 8(ab + bc + ca) + 6abe > 0.
Since
2
3—ab—bc—ca=(a—+b§ﬂ——ab—bc—ca=
— h\2 _ )2 N2
_(a by +(b—c)*+ (c—a) >0
6
and

9 — 4(ab + bc + ca) + 3abe > 0,
the conclusion follows. For p > 6, equality occursif and onlyifa=b=c=1.
63. Let n > 4 and let aj,az, ..,a, be real numbers such that
al+ay+---+a>n and a¥+a§+---+a,21_>_n2.

Prove that
max{ay,az,.. ,an} > 2
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Solution. For the sake of contradiction, assume that a; < 2 for all 7. Let
z;=2—a;>0foralli,andlet S=2; 429+ -- +2,, 5 >0 From

n<a4ag+- +an=2m-35,

we get S < n, and from

n
nt<altal+---+a? =2(2—:1c,—)2 =
i=1
n
=4n—4S+ ) 2l <dn-45+ S =dn -4+ (S—2)%,
i=1
we get (S —2)2 > (n—2)% For § > 2, (S ~2)? > (»n —2)? implies S > n,
which contradicts S < n. For § < 2, (§-2)? > (n—2)? implies2—S > n—2,
and hence S < 4 —n <0, which contradicts § > 0.

*
64. Let a,b,c be non-negative numbers, no two of which are zero Prove that
a b c_ o 13 2(ab+ bc+ ca)

b+c+c+a+a+b -6 3(a? + b2 + c?)
Solution (by Pham Huu Duc) Rewrite the inequality as

a N b N c 3>2(1 ab+ be+ ca
b+ec c4+a at+b 273 a2+b2+c2)

a 1y (a—-b)+(a—c) a—b b—a
Z(b+c—§)_Z 2(b+ ¢) _22(b+c)+22(c+a)_

—a—by 1 1y (a— b)?
h 2 (b—}—c_c-i a)_ZQ(bJrc)(cha)

and

_2_(1_(1b+bc+ca)_Z (@ — b)?
3 a4 b2 42 ) 3(a? 4+ b2 4 c2)’

the inequality becomes

It is true because
3(a2+ b4 cz)— 2+ c)(c+a)=(a+b- c)2+ 2(a— 5)22 0.

Equality holds if and only if a = b = ¢.
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*
65. Let a,b,r he non-negative numbers, no two of which are zero Prove that

a®(bh 4 c) 4 b(c+a) ca+b)

>
B2 1+ o2 21a ' a2t b 2atbte

First Solution (by Gabriel Dospinescu). We have

(b+c) (b+c) b(a — b) + ac(a ~
I S M R R e
_ — nbla—b) ba(b—a)  ab(a+ b)(a —b)?
Z b2+c2 Z c? 4 a2 —Z(b2+c2)(c2+a2)—

Equality occurs for « = b = ¢, as well as fora = 0 and b = ¢, b = 0 and
c=a,c=0anda=10.

Second Solution. By the Cauchy-Schwarz Inequality, we have

2(b a2b+c 2
Z . '*'C) [Z ]

+ c? Za (b+c)(b* + )
Then, it suffices to show that
[Saib+a) 2 (o) [E a6+t + &)
Let p=a+ b+ cand g=ab+ bc+ ca Since
]:Z a’(b + c)]2 = (pq— 3abe)? = p*q® — 6abepg + 9a%b*c?
and
Y ad(b+ ) (b2 + &) = Y (b +c) [(a® + b%c? + cPa?) - b*c?] =

= (a%? + 8% 4 ) Y (b + o) - Y (p—a)b’’ =
= pla®b? + b%c? + c2a?) + abeq = p(q° — 2abep) + abeg,

the mequality becomes
abe(2p® + 9abe — Tpg) > 0
This inequahty immediately follows by the third degree Schur’s Inequality
p° + 9abc > 4pg

and the known inequality p® — 3¢ > 0.
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*
66. Let a,b,c be non-negative numbers such that
(a+b)(b+c)e+a)=2.

Prove that
(@® + be)(b? + ca)(c® + ab) < 1

Solution. We have to prove the homogeneous inequality
4(a® + be)(b® + ca)(c? + ab) < (a+b)%(b + ¢)?(c + a)?.
Without loss of generality, assume that a > b > ¢. Since
a? +be < (a+e)?

and
4(b% + ca)(c® + ab) < (b% + ca + c* + ab)?,

it suffices to show that
b2+ +abtac< (a+b)(b+c)

This inequality is equivalent to ¢(c — b) < 0, which is clearly true. Equality
occurs if and only f a=0andb=c=1,b=0andc=a=1, ¢c =0 and
a=b=1.

Remark Michael Rozenberg noticed that the above homogeneous
mequality is equivalent to

(@a—0)*(b—c)*(c — a)* + dabe ¥ be(b + ¢) + 8a2b2c? > 0.
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Chapter 2

Starting from some special
fourth degree inequalities

2.1 Main results

1. If z,y, z are real numbers, then
(22 + 92 4 22)? > 3(3y + 432 + 23z)
( Vasile Cirtoaje, GM-B, 7-8, 1992)
2. If z,y, z and r are real numbers, then
Zm4 + (372 —1) Z z%y? 4 3r(1 — r):ryzZ:z: > 3rZa:3y.
( Vasile Cirtoaje, MS, 2005)
3. If z,y, 2 are real numbers, then
oyt + 2t b oy 4yt 4 2 > 2Py e + 2P,
( Vasile Cirtoaje, GM-B, 10, 1998)

4. If z,y, z are non-negative real numbers, then

4 2_ 2.2

4yt 4 2y yl22— 2222 > Az y + 4%z + 2Pz — 1B - yzS—z:z:3)

5. [fz,y, 2 and r are real numbers, then
Z(.L —ry){z—rz)(z—y)(z — 2) > 0,
where Z is cyclic over z,y, 2.
(Vasile Cirtoaje, MS, 2005)
67
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6. Let x,y, 2 be non-negative numbers, and let S; = Zm‘(:r —y)(z - z).
For any real numbers p, g satisfying pg > 0, the inequality holds

(Vasile Cirtoaje, MS, 2005)

7. Let z,y,z be non-negative real numbers such that z + y + 2z = 3. If
In3

= =~ <
m= ST 1355 and 0 < r < m, then

'y +y 2"+ 2" <3
(Vasile Cirtoaje, CM, 1, 2004)

8. Let z,y,2 be non-negative real numbers such that z + y+ z = 2. If
2 < r <3, then

F(y4 2) + (= ba) + (e +y) <2

9. Let z,y, z be non-negative real numbers satisfyingz+y+2=1. lf p>0

- 1(2p+1
and ¢ < (p )Elp_*- ),then

z+ zx + z 149
Y q+ q+ y+qS Q_
z+p y+p z4+p T 143p

( Vasile Cirtoaje, MS, 2005)
10. Let z,y, 2 be positive real numbers If 1 < r <3, then

x'ry4—r +yrz4—'r + 21'24—1" < (5132 + y2 + 22)2.

L=

11. Let z,y, z be positive real numbers.

1
a) Ifa:+y+z:3and0<r_<_-2-,then
1+'r r+y1+r 'r_i_zl-}-r 'r<3

byIfz+y+z=1+4+2randr>1, then

ml-}-ry'r_*_ IR r+zl+'r T <T‘ (1+r)1+7‘
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12. Let z,y, 2z be positive real numbers.

3
a) If:z:+y-|-z=3and0<r§-§,then

z’y+yz+ 2 <3;
bylfz+y+2=7r+1andr > 2, then
'y +yz4+ 2"z <.
13. Let m > n > 0, and let z,y, z be positive real numbers such that
gDy g min _ g

Then

mm ym zm
FEat a2

(Vasile Cirtoaje, MS, 2005)

14. Let a,b,c,d be non-negative real numbers. If p > 0, then

a b c d 0
— — — = > .
(1+pb+c) (1+pc+d) (1 +pd+ a) (1+pa+b) 2 (1+p)
(Vasile Cirtoaje, MS, 2004)

15. If a, b, c are positive real numbers, then

1. 1 1 1 1>(1 1 1).

4b+z+a+b+b+c+c+a" 3a+b+3b+c+30+a

Ly
4a
(Gabrel Dospinescu, MS, 2004)

16. If z,y, 2 are non-negative real numbers satisfying £ + y + 2 = 3, then

z + Y + z >‘3
zy+1 " yz4+1 2241727

17. If z,y, z are non-negative real numbers satisfying z + y 4+ z = 3, then

I RN
y2+3 " 2243 2243 4"

18. If a,b, c are positive numbers satisfying abe = 1, then

a N b + c > 1
Vbo+8 c+8 Varg="
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19. If a,b, ¢ are the side-lengths of a triangle, then
a)  3(a®b+ b3+ Ba) > (ab + be + ca)(a® + 6% + &),
b)  9(ab+ be + ca)(a® +b% 4+ c*) > (a+ b+ )
20. Let a,b,c be the side-lengths of a triangle. If r > 2, then
3(ab +bc+ca)> (a+b+cla" b+ b e+ a).
21. Let a,b,c be the side-lengths of a triangle. If r > 2, then
a"bla—b) 4 b"c(b—c)+c"alc—a) 20
(Vasile Cirtoaje, GM-B, 4, 1986)
22. Let a,b,c be the side-lengths of a triangle. If 0 < r < 1, then
a®b(a” —b") + bPe(b” — ") + c*a(c” —a") > 0.
(Vasile Cirtoaje, MS, 2005)

23. Let a,b,c be the side-lengths of a triangle. If z,y, 2 are real numbers,
then

(ya?+ 20+ zc?)(2a® + b +yc?) > (2y+yz+2z)(a?b? +b%c +cfa?)

(Vasile Cirtoaje, GM-A, 2, 2001)

2.2 Solutions

1. If z,y, z are real numbers, then
(@ +y? + 202 > 3(2%y + vz + 2°a). (1)

Proof. A way to prove (1) would be a suitable arrangement of the variables
Let
E(z,y,2) = (x2 + y2 + zz)2 - 3(9:3y + y3z + z3:z:)

First we write E(z,y, 2) in the form

E=3[re* + (1 -y +22%° - 3%,
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where r is a real number and Y is cyclic over z,y, z (this convention will be
used along all the book), then try to find a suitable number r, 0 < r < I,
such that

rzd 4 (1-rjy*+ 2r%y? — 323y > 0

for any real numbers x and y. We can’t find such a number r, since the left
side of the inequality divides by z —y for any r, but divides by (z — y)* only

5
for r = — > 1. Thus this method fails for our inequality.
Under the circumstances, we will use the substitution method Setting

y=z+p 2=z+4q,
inequality (1) can be written as
Ey —2E; >0,
where

=N Br-y)=-pP+(p- i +¢B =
=p(y—$)(y +yz+ 28+ gz —y)(2* + 2y + 42 =
=3(p* — pg+ g2 + 3(p° — PPg + )z + p* — PPg+ ¢,

Ey=) z%(z—y)=—prly + (p - q)y’z + ¢z°z =
= py(yz — :1:2) + qz(2z — y2) =
= (p* —pg + ¢*)x® + (p° + pq — 20¢* + )z + p3q — P2

The inequality is equivalent to
az’ + Bz +v >0,
where
a=p'—pg+q’,

B =p®-5pq+ 4pg® + ¢,
v =p'=3p%q + 2% + 4.

For p = ¢ = 0, we have az?® + 8z + 7 = 0. Otherwise, we have a > 0,
and it is enough to show that the discriminant & of the quadratic function
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az? 4+ Bz 4 v is less than or equal to zero. Indeed, we have

§ = 8% — day = —3(p® — 20%q — 3p*q? + 6p°¢® + 20%¢" — dpg® + ¢F),
§ = —3(p® - p*q— 204> + ¢°)* < 0.

We observe that equality in (1) occurs for (z,y,2) ~ (1,1,1) Besides,
equality occurs for
2 4T 2 AT 2 71')

(x,y,2) ~ (sm = ,Sin = ,Sin -

or any cyclic permutation thereof. The last equality points can be derived
from the equality equations

P’ —p*q—2p¢* +¢° =0,

—(»® — 5p%q + 4pg® + ¢°)
2(p* —pg + ¢%)

Tr —=

taking mnto account that y =z +p, 2=z + 4. a
Remark 1. Starting from the obvious relation
da(az? + Bz +v) = (2az + B)* -
we can deduce the following identity
AF - E(z,y,2) = (A —5B+4C)? + 3(A— B—2C +2D)?,

where

(z—y)? + (y—2)* + (2 —z)°
2 ?

A=z +13°+ 25, B =1y + viz+ 2%z, C = zy* + yz* + 22%, D = 3zy2

F=x?ty?+22—zy—yz—2zx=

Remark 2. We can also prove (1) using the special identities

(12+y2+22) 3(my+yz+zx ,)Zx — ¥ —zy + 2z — 22)* (2)
and

1
(22 492 +22)2 = 3(zPy+ 33 + 2%2) = GZ(% —y?—22—3zy+3yz)? (3)
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Remark 3. Inequality (1) can be rewritten as
2% (x — y)(x — 2y) + v (v — 2) (v — 22) + 2%(2 — z)(z — 22) > 0.
*

2. If ,y,z and r are real numbers, then

Zx4 +(3r2 - 1) Z z?y? + 3r(1 — r)zyz Z:n > 3r Zx?’y. (4)

Proof. We first notice that (4) is a generalization of (1). Indeed, for r = 1,
the inequality (4) turns into (1).
Let y =z + p and z = = + gq. We see that (4) is equivalent to

Ey4+(1—-3r}E; + 3r(r — 1)E3 > 0,
where E| and E; are the previous expressions, and
B3 = Zx2y2 —:ryzZ:r = %Emz(y -2)? =
= ("~ pg + ¢*)2° + (p'q + pd’)z + p?¢”.
Thus, inequality (4) reduces to
az? 4+ Bz +v >0,
where

a= (3r? — 6r + 4)(p? — pg + ¢°),
B=(4-3r)p*+ (3r? —6r — 2)pq -+ (372 + 3r — 2)pg® + (4 - 3r)¢3,
v =" —3rpPq 4+ (377 — 1)p%¢® + ¢*.

For p = ¢ =0, we have ax? + 8z + v =0 Otherwise, we have a > 0, and
§=p32—day=-3 [rp3 — (3r® — 2)p%q + (3r? — 3r — 2)pq® + rqS]2 <0.

Another proof of (4) is the following We write the mequality in the form

3(Zm2y2—myz2x) r2—3(2x3y—myzzx)r+
+3 28-S 2% >0 (5)
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Since

3 (Z$2y2 _Iyzzm) = '1«_52 (zy — 2yz + 22)?,

3 (Z:r?’y —myzZm) = _3Zyz(x2 _y?) =

=-3% ya(z® -yt + Y (ay +yz + 2z)(z* — %) =
= 2(3:2 — ) (xy — 2z + 2x),

St - Yty = éz(xz _ 2

the inequality becomes as follows:

1 1
523 (wy =2z +2z) = r 3 (& — o) (ay ~2ye +22) + 5 3 (=R —¥) 2 0,

or
%Z(mz — y2 — ray + 2ryz — rz:r)2 >0,
which is clearly true
Equality in (4) occurs for (z,y,2) ~ (1,1,1) Forr > —1—9, we claim that
equality again occurs for a triple (z,y,2) ~ (z1,y1,1) withz; 20,5, 20

=

for (z,y,z) ~ (0,v2,1). O

1
and (z1,v1,1) # (1,1,1) For example, in the case r = 73, equality occurs

and r = 5 inequality (4) becomes

3214 + (Z::z:y)2 > Gszy

Remark 1. Forr =

Wi N

and
2
32z4+32x3y > Q(ny) ,
respectively. Equality occurs in both inequalities for (z,y,2) ~ (1,1,1)
The first inequahty becomes again equality for (x,y,z) ~ (1,¥1,21) with
y; =~ —2565 and z; = —18 35, while the second inequality becomes again
equality for (x,y,z) ~ (1,y2,22) with y2 = —0.4874 and 2 ~ -0.9115

Remark 2. We can also write inequality (4) as a sum of squares, as follows

Z(sz —y? — 2% —3rzy+ 3ryz)2 > 0.
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Remark 3. The following statements is valid
If x.y,z are real numbers, then

4 (Z:L" - Z y2::2) (Zszz —Tyz Zm) >3 (Z 3y — Ty2 Zx)2 . (6)
(Vasile Cirtoaje, MS, 2005)

We note that (6} is equivalent to § < 0, where § is the discriminant of
the non-negative quadratic of r from the left hand side of (5)
Surprisingly, Thomas Mildorf noticed that (6) is equivalent to the following

obvious inequality )
[z :I:Q(xy +yz — 22:1:)] >0
Equality in (6) occurs for (z,y,2) ~ (1,1,1), but also for many other triples
(z,¥, 2).
*

3. If z,y, z are real numbers, then

syt 2 r oty > 2($3y+y33+z3m). (7)
Proof Setting y =z + p and z = z + ¢, the inequality turns into

Az* 4+ Bz +C >0,
where
A=3(p"-pa+q*), B=3(p"-2p’q+pg’ + ¢*), C = p* 2%+ pg® + ¢*
Since the discriminant of the quadratic Az? + Bz 4+ C is non-positive,
B? —4AC = =3(p° — 6p*¢* + 2°¢® + 9p¢* — 6pg® + ¢) =
=-3(p° - 3pg® + ¢*)* <0,

the conclusion follows.
We have equality for (z,y,2) ~ (1,1,1). Besides, equality again holds
. T 2w 27
for (z,y,2) ~ (sm a,sm 5 sin §,sm -?) or any cyclic permutation O
Remark 1. Inequality (7) is more interesting in the case ryz < 0. If 2,y, 2
are positive numbers, then inequality (7) is less sharp than inequality (1),
hecause (7) can be obtained by adding (1) to

zy(z —y)* + yz(y — 2) zz(z —z)2 >0
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Remark 2. [rom the proof above, we can derive the following identity
M- F(z,y,2) = (A~3C +2D)* + 3(A - 2B+ C)’, (8)
where

Fz,y,z) =z +y* + 24 + 23 + y2® + 228 — 2(2%y + 32 + 252),
M=4(z+y2 4+ 22 —zy—yz —2z) = 2z — ¥)2 + 2(y — 2)® + 2(z — z)?,
A=23+3 +23, B=x22y+y’z+ 2%z, C=zy® +y22 + 2%, D = 3zy2

Remark 3. Inequality (7) is a direct consequence of the identity

Pyt oy yf 42 -2l iyl + Pr) =
1
= =% (2® — y? +yz —2y)*. (9)

-

Remark 4. By identity (9), it follows that (7) becomes equality if and only
if

z(z—y)=y(y —2) = 2(2 — )
Assuming that
zlz—y)=yly—2)=z(2—x) =5, s #0,
we get

1+1 1l z—y y—2z2 z—=x
T Yy z s s s

This result yields the following nice statement:
If z,y, 2z are distinct real numbers such that

zt + y4 +z24 4 :ry3 -+ y23 1223 = 2(:B3y + y3z + 233:),

1 1 1
then —+ -+ —=0.
r y =z

Remark 5. Inequality (7) is equivalent to either of the inequalities

(2 — )22 + 1) + (¥ — 2)(26° + ) + (2 — 2)(22° + 2°) 2 0,
(z — ) +22%) + (y — 2)(¥* +22°) + (2 — z)(z*+2°) >0

*
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4. If z,y, 2 are non-negative real numbers, then
o p oyt 22yt —y?2% 2% > 2(:r3y +y32 4 2Bz —zy®— yzB—sz). (10)

Proof. Write first the inequality in the form

1 o oy, 1. 92 9o 1. 9 909
5( —y) 45 z)+2(z )+

+2z—y)y—2)z— 2Nz +y+2) 20

Due to symmetry, we may consider that z = min{z,y, z}. Using the substi-
tutiony =z +4+p,2=24+qg(z>0,p >0, g >0), the inequality reduces
to

2Az? + 4Bz + C > 0,

where

A=p*+(p-9)?+¢* B=plp—q?+ ¢,
C=p'-20%0—p*¢" + 2p¢® + ¢* = (¥ — pg — ¢*)%.

Since A > 0, B > 0 and C > 0, the inequality is obviously true. Equality

145
5 ,1) or any

cyclic permutation. O

oceurs for (z,y,2) ~ (1,1,1), and again for (z,y,2) ~ (0,

Remark. Inequality (10) is equivalent to
2(2® — ")z — 2) +y(y® - 2%)(y — 22) + 2(2? - 2%)(z — 22) > 0.
*

5. If x,y,z and r are real numbers, then
Z(m—ry)(z—rz)(m—y)(m—z) >0, (11)
where Z is cyclic over z,y, 2.

Proof Let y =z + p and z = 2 + q. We can rewrite the inequality in the
form

Au® + Bu +C >0,
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where u = (1 —r)r, s =2 + r and

A=p*—pg+4q%
B = (p+4q)(24 - spy),
C=(p+9)*A—spa(p+q)° +sp¢
The quadratic Au? + Bu + C has the discriminant
D = B? —4AC = -3s%p’¢*(p — ¢)*

Except for the trivial case p = ¢ = 0, we have A > 0 and D < 0, and the
conclusion follows

We have equality in (11) for (z,y,2) ~ (1,1,1). Additionally, equality
again occurs for (z,y,2) ~ (r,1,1) or any cyclic permutation. (]

Remark 1. Setting » = 0 in (10) yields Schur’s Inequality of fourth degree

Z:a:z(:r —y)z—2)>0

which is equivalent to cach of the following inequalities

iyt 4 2 +ryz(z+y+z2 >Zy y? +z ,
ot 4yt + 2+ 2ayz(z +y + 2) 2 (zy byz + 2z)(2? 4+ y7 + 2P,
Stw-2y+z-2)°20

and

(5% - S2) (45, — S%)
S\ ’

where Sy =z +y + 2z and Se = 2y + ¥z + 2z.

6xyz >

Remark 2. Inequality (11) is equivalent to each of the inequalities
Z i r(r+2) Zy222 + (1—r2):z:yz Z:L‘ > (r+1) Zyz(y2+zz) (12)
and 51 5)828. 2)252
3(r — 1)(r + 2)ayz < =L —(r+5) 192+(r+” 2,
21

where S; =z +y+zand S =zy+yz+2z Forr =1 and r =2, from
(12) we get the inequalities

(13)

74 +y4 42t 3(x2y2 +y222 n zzxz) > QZyz(yz + 22),
4yt 420+ 8(e%? + YR+ 2% 2 Bay +ys k) (5 H R 42,



2 2 Solutions 79

respectively We have equality when (z,y,2) ~ (1,1,1). For the last
inequality, equality again occurs when (z,y,z) ~ (2,1, 1) or any cyclic per-
mutation. Notice that the first inequality can be written as

-y +@-2)+(z-2)" >0

Remark 3. We can also prove (11) using the identity

S -r)e-raE -2 = 3 D=yt -a—ra) (10
Remark 4. From the proof above, we can deduce the following identity
AM Y (z —ry)(z —r2)(z — y)(z — 2) = p* + 3Q%, (15)
where

M:x2+y2+z2—:ry—yz—zx=Z($—y)(2¢—z),
P=22x(m—y)(m—z)—sz(y—z)Q,
Q=(r+2)(z—y)*(y - 2)’(z — o).

For r = 0, we get the identity
MY e (z=y)z—2) = (3 ale—y)(z—2)) +3(z-y)*(y-2)}(=~2)* (16)
Denoting S; = ¥ z*(z—y)(z—z), identity (16) yields the following inequality
So Sy > S%,

with equality if and only if two the numbers z,y, z are equal.

*

6. Let x,y, 2 be non-negative numbers, and let S; = Zm’(m—y)(m —2). For
any real numbers p,q satisfying pqg > 0, the inequality holds

Proof. If two of z,y, 2 are equal, then Sy = Sp =S¢ = Spiq =0 Consider
now, without loss of generality, that = > vy > z Dividing by

(z—y)*(y—2)*(z — =z 2,
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the inequality becomes successively as follows:

(£5) (%) (5:5) (£55)

yP+fI + zP+q — ypﬂ — y‘? ~P
2 (z—y)(z—=z)
3y = 2)(yP — 2P)T - 27) <0,
(y—2)(yP = 2P) (y7~29) + (z—y)(aP —1P) (29 —19) < (z—z)(aP —2F) (29— 29).

Since (y? — zP)(y? — 29) 2 0 and (z? — yP)(z9 — y9) > 0, we thus have

(y— 2)(%F — 2P)(¥? — 2%) < (z —2)(v° — 2F) (3" — 2)

0,

and
(z —y) (2P — vP)(a? — ¥*) < (z — 2)(zP — ¢P) (2% —¢).
Thus, it suffices to show that
(4~ P)e — ) + (22 = 17)(aT 1) £ (2" = F)(a — 29).
This inequality reduces to
(4 — 2P)y? — %) + (4P — )~ 57 <O,

which is true for all real numbers p, ¢ with pg > 0. This completes the proof.

'e have equality if and only if two of the numbers z,y, = are equal O
*
7. Let =,y,z be non-negative real numbers such that x + y + 2 = 3. If
m = E%ZR: 1.355 and 0 < r < m, then

2y YT 2T <3 (18)
Proof Let E.(z,y,2) = 2"y" +y 2" + z"z". By the Power-Mean Inequality,
we have : .
(5)' < (%)
3 —\3
Thus, it suffices to show that E, < 3. To prove this, suppose that

+ 2z
z = min{z,y, 2} and denote ¢ = y_2_ (hence z + 2t =3, t > x).
We will show that

Em(x:y;z)SEm(xyt:t)S Em(lvlrl) (19)
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The left inequality of (19) can be written as
mmym +ymzm + M ™ < QpMmm + t2m,

or
t2m 2 xm(ym + 2™ th) + ymzm.

By Jensen’s Inequality, we have y™ + 2™ — 2¢t™ > 0. On the other hand,
from z = min{z,y, z} we have ™ < /y™z™ Therefore,

2™y + 2™ - ™) < Yy (y™ 4 2™ - 2t™)
Thus, it suffices to show that
D N T (T T WP
This inequality is equivalent to each of the following inequalities:
(" + V)’ > Ve (g vem)
"+ AT 2 Y (Vg + V)
t™ — (——‘/y_m; \/ZTY + (———‘/y_m; i 43!’"2"‘)2 20

. V™ + vz
Since t™ — (—y—é——z—) 2> 0 (by the Power-Mean Inequality), the

inequality is clearly true.
The right inequality of (19) can be written in the homogeneous form

2$mtm+t2m 2¢ 2m
< (2575) (20)

3 3

For t = 0, the inequality is trivial Otherwise, we may set ¢ = 1, which
implies <1 Taking logarithms yield

2m
ln—a-:—:;_-i_—l52m]nm+2

~——
'To prove this inequality, we consider the function

T+ 2 2z™m™ + 1

f(z) =2mln 3

In
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We have to show that f(z) > 0 for 0 < z < 1. The derivative

f(z) = 2m  2mz™"!  dm(z™ —22™7' 4 1)
T x+2 2em41 (z+2)(22™ + 1)

has the same sign as g(z) = 2™ — 2271 + 1, and the derivative

me1  2(m-—1
g'(x) = mz™ ™! — —;QT)
. 2(m - 1)
is zero for z = 1y = ————— =~ 0 524. Since ¢'(z) < 0 for z € (0,2;) and

g'(z) > 0forz € (z1,1], tgle function g(z) is strictly decreasing for z € [0, z1],
and strictly increasing for = € [z3,1]. Since g(0) = 1 and g(1) = 0, there
exists o € (0,z;) such that g(z2) = 0, g(z) > 0 for z € [0, 22), and g(z) <O
for z € (z2,1) Hence, f/(z2) =0, f'(z) > 0for z € [0,22), and f'(z) < 0 for
T € (z9,1) Therefore, the function f(z) is strictly increasing for z € [0, z2],
and strictly decreasing for z € [z2,1] As a consequence,

f(z) 2 min{f(0), f(1)}

Since f(0) = f(1) =0, we get f(z) > 0, establishing the desired result.
We have equality in (18) for (z,y,2) = (1,1,1). In the case r = m,
33

—) or any cyclic permutation O

equality again occurs for (z,y,z) = (0, 33

4
Remark 1. For r = 3, We obtain the following nice statement

If x,y, 2 are non-negative real numbers such that x + y + z = 3, then

(2]
[ZFS
[IES

(zy)3 + (y2)3 +(22)3 < 3 (21)

(Vasile Cirtoaje, GM-A, 1, 2003)

Remark 2. An interesting extension of inequality (18) is the following.

Let z,y,z be non-negative real numbers such that z +y + 2z = 2.

In3

— =~ 1.355, th
In9 — In4 1.355, then

r>m-=

2y Y < (22)
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r
m

) () + (i)
(a+b+c)+(a+b+c a+b+c/ —

<—2 4 b +—— =1
“a+b+4+c a+b+c a+b+tc ’

we get
a® + 0P+ P <(a+b+e)f

Hence

Iry-r +yrzr + 272" = (xmym)p+ (ymzm)p + (zmxm)p <

< (&Y™ YT 4 TP,

Consequently, it suffices to show that z™y™ +y™2z™ + 2™2™ < 1. According
to (18) — case r = m, we have

2m 24 2m
2Ty Y™™ 4 2Me™ < 3 (#) =2 (—) =1,

and the proof is complete.
Equality in (22) occurs for (z,y,z) = (0,1,1) or any cyclic permutation.

2 22
In the case r = m, equality occurs once again for (z,9,2) = (§ T §)
*

8. Let z,y,z be non-negative real numbers such that = + y+z=2 If
2<r <3, then

T+ 2) 4y (24 z) + Lz y) <2 (23)

Proof. Let E,(z,y,z) be the left hand side of the inequality. Assume,
without loss of generality, that z < y < 2, and then show that

Er(z,y,2) < E, (0,2 +y,2) < 2.
The inequality E,(z,y,2) < E.(0,z +y, 2) is equivalent to

Iy T T— T T T
— (@ YT S (e +y) -2y
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Since the left hand side is decreasing with regard to 2, it is enough to consider
that z =y In this case, the inequality reduces to

20" +y Mz +y) < (z+y)
Since 22" < z"71(z + y), it suffices to show that
2yl < (24 y)

This inequality is true, because

r—1 ,r—1 r—1 r—1

?r+;ﬁ” :(miy) +(ziy) :griy+miy:1

Notice that the inequality E,(z,y,2) < E.(0,x + y,2) is valid for any real
r>2.

Setting now t = z+y (hence ¢t + z = 2), the inequality E,(0,z+y,2) < 2
becomes

t;:(:ff_1 + 2"y <2

By Power-Mean Inequality, for » < 3, we have

tr—1+2r—1 ﬁ t2+22 '%
3 S\T2 )

r—1

so that

tr—l + zr—] S 2 (

Thus, it suffices to show that

1

12 2\ 5
tz( +z) <1

5 <
Since t + z = 2, this inequality is equivalent to
r—1

tz(2—tz)7 <1,

or
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2 . .
Let u == ;—, u>1,and let p = " 1 < p < 2. Using Bernoulli’s
z r—
Inequality, we get

= 1 1
(i) 1—‘.2+tz=[1+(u—1)]p—2-+-521+;0('u—1)—2+;=

tz
1
= (u-— —Z)>o.
(u—1) (p u) >
Equality in (23) occurs for (z,y, z) = (0,1, 1) or any cyclic permutation. O

Remark 1. For r = 3, the inequality has the form

1
2y +2)+ (2 +2) + 2z +y) < g (2 +y+ 2)* (24)
We can prove this inequality using the assumption z = max{z,y, z} and the
identity
1 g _ 1 4,3 3
g(r+y+z) = g(—ﬂ:+y+2) + 27 (y + 2) + z(y + 2)°.

The inequality becomes
yz(y® + 22— 32y — 3z2) < (—z +y + z)4,
and it is true, because left hand side is less than or equal to zero:
y2+22—3:ry—39:z§y2+z2—3y2—3z250.

Remark 2. Inequality (23) is not valid for ~ > 3. However, as shown above,
If the numbers z,y, z sum to a constant value, then the expression E, (z,y,2)
with r > 2 attains its maximum value when one of x,Y, 2 1s zero. For r = 4,
we have the following nice statement:

If z,y,2 are non-negative real numbers, then

Syt tuiza)+ iz ) < Sty (25)

( Vasile Cirtoaje, MS, 2005)

On the assumption that z < y < z, this inequality follows from

Es(z,y,2) < By(0,z +y,2) < —

£ (:r+y+z)5.
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We have

Ey(0,5 +9,2) = Ba(2,y,2) = 2(z + y)* — 2%y + 2) = y*(z + 2) =

= zY [2.2(‘.2:1:2 + 2% 4 3zy) — 2% — y3] >

> zy [(z+y)(22® + 27 + 3zy) — 2° — %] > 0,
and
(z4y+2)°—12E4(0,z+y, z)=(:1:+y+z)(:z:2+y2+z2+25':g,1—4yz—42:9:)2 >0

Equality in (25) occurs for (z,y,z) ~ (0,1,2+ \/§) or any symmetrical
permutation.

Remark 3. We will show in chapter 5 that inequality (23) is valid for the
larger range rg < r < 3, where

In2
=g _ma
On the other hand, we will show in chapter 3 that for 0 < r < rg and

z + y + 2 = 3, the inequality holds
2 (y+2) +y (24 2) +27(z+y) <6

All these results solve the problem posted on Mathlinks Inequalities Fo-
rum in 2005, by Pham Kim Hung.

Let < y < z be non-negative numbers such that x +y + 2z = 3. For
r > 0, when the expression E.(x,y,2) attains its mazimum vaelue?

The answer to this problem is the following

a) E(z,y,z) < E(1,1,1), for 0 <r < g,

33
mEm%agE@anE@32)mn_m,

3 3
c) E(z,y,2) < E( 1 2) for ro < r < 3,

d) F(z,y,2) < r4r_1ax E(0,y,2) = Taxayz(y’_] + 27 1), forr >3
y+z=

*

9. Let x,vy,2 be non-negative real numbers satisfyingz+y+z2=1. Ifp>0

- D{2p+1
and ¢ < (p )El P ), then

] zy + 1+9
yz’rq+zm+q+y q< q

< - (26)
z+p ytp z+p ~ 14+3p
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Proof. We write the inequality in the form

yz+z:1:+2:y 1+(1+1+1_9)<0
z+p  yip  z+p 143p  T\z+p  ytp  z4p 1+3p) =

By the AM-HM Inequality, we have
1 1 1 9 9
+ + > = :
z+p y+p z+p  (z+p)+(y+p)+(2+p) 1+3p

(p—1)(2p+1)
4

. In this case,

Thus, it suffices to prove the inequality for g =
the inequality becomes

Z 6p—5
?,lJrq+zav:+q+:1:y+€l'S 14
T+p y+p z+p 4

?

(6p=5)(z+p)(y+p)(z+p) 24D (yz+q)(y+p)(z+p)

Let ¢t = 2y + yz + zz. By the well-known inequality

(z+y+2)? > 3(zy +yz + 2z),

. Since

Caolr—'k

we get t <
(6p—5)(z + p)(y + P)(z + p) = (6p — 5)(zyz + pt + p* + p°)
and

13 Yz + @y +p)(z+p)= (dyz+2p* —p— 1)(yz —pz + p+ p?) =
=43 y* 22+ (6p* +3p— 1)t + p(3p+2)(2p° — p— 1) — 12pzyz =
= 4" + (6p° + 3p— 1)t + p(3p + 2)(2p" — p— 1) — 4(3p + 2)zy2,

the inequality reduces to

(1 —4t)(2p+t) + 3(6p + 1)zyz > O.

. By the

('.olr—l

1
For t < - the inequality is clearly true. Consider now - < ¢
. ) . 4
third degree Schur’s Inequality

(m+y+z)3+9:ryz24(x+y+z)(my+yz+zx),
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we get

¢ -1
Y2 >

Thus,

(1—4t)(2p+t) + 3(6p+ Vxyz > (1 —4t)(2p+ ) +
_ (4 )(1 3% S0

111
In the original inequality, equality occurs for (z,y,2) = (§’§’ §) In the

~1)(2p+1 L1
(p )El ptl) , equality also occurs for (z,y, z) = (0, 3 5)
and any cyclic permutation. O

special case g =

) 1
Remark In the particular cases p =1, g =0and p = 1= "5 from

(26) we find the following inequalities

yz 4 2z 4 Ty 1
z+1 y+1 z41~ 4’
0

IA

9yz—1 9zz—1 9zy-—1
+ +
6z + 5 6y + 95 6z+ 95

A

111
respectively. Equality occurs for (z,y,2z) = (§,§,§), as well as for

11
(z,y,2) = (O, 3 5) and any cyclic permutation

*

10. Let z,y, z be positive real numbers. If 1 <r <3, then

1
_Try‘l—'r _*_yrzd—r_*_zrmd—r < - $2+y2 +z2)2 (27)

3
Proof. We notice that for r = 1 and r = 3, this inequality becomes of type
(1) Let E, = 'y " +y 2" 4+ 2”247 For 1 < r < 3, we apply Jensen’s
Inequality to the concave function f(t) = £ to get

r—1} r-1 r—1 r—1
2\ T 2\ & ~2N\ T E 5
3 (X 3({Y 3(* 3 _
E, =zy (F) +yz (;) +zzx (2:2> <E; (El) =

3—r r 1

= E 7 E,?
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1 1
According to (1), By < = (22+y?+2%)? and F3 < §(I2+y2+z2)2, and hence

5 (@
1
E, < = (2% 4y?+2%)%? Thereis equality in (27) for (z,y,2) ~ (1,1,1). In the

-3
) . o 4T o 27 o T

case r = 3, equality again occurs for (z,y, 2z) ~ (sm - sin? - sin ?) or

any cyclic permutation. Also, in the case r = 1, equality occurs occurs again
oM p2m AT _ _

for (z,y,2) ~ [ sin —7;,31n 7,sm = or any cyclic permutation. O

Remark. Replacing z,y,z with /z, \/7, \/z, respectively, and r with 2r,

we get the following equivalent statement.

1
Let z,y, 2 be positive real numbers such that x4+ y+2=3. [f= <r <

then

bo
NJIOQ

m'ry2—'r+ y'r22—r + ZT$2—T <3
*

11. Let z,y, z be positive real numbers.

1
a) If:r+y+z=3and0<r§§, then

1+ryr+ yl+rzr + z1+'rxr < 3; (28)
b) Ift+y+2z=142r and r > 1, then
1+ryr+yl+rzr+ 1+r r <r (1+r)1+r (29)

PT'OOf. Let Fr(I,y,Z) — Il-{-r,yr + y1+r T4 21+r

1 1
a) For r = 5 the inequality F% < 3 1s just of type (1). For0 < r < 3
applying Jensen’s Inequality to the concave function f(t) =t yields

Fo=z(v39)" +y(Vi2)" +z(Vzz)" <

F‘1 2r
S(Ety+z) “‘Iy—r) =9

1
ForO<r<« 5 equality in (28) occurs if and only if (z,y,2) = (1,1,1).
b) There are two cases to consider.
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Cuse r < z <y We will show that
F(r,y,2) < F(0,z+y,z) < F(O,1 +r,7)
We have
F(0,z+ y,2)— F(z,y,2) = (= + y) e — ety gl 2T
Since
(z4y)*" 2+ )" +y") 2o +aTy +y
we get
Fo0,7 +y,2) — F(z,y,2) 2 zy"s" + 2"yz" —z!"y" — 27217 =
=zy" (2" —2")+ 2 ="(y—2) 2 0.
Setting now z-t y =t (¢ >0, t+2 = 1 +2r), the right inequality becomes
F(0,t,2) < F(0,1 +1,r),

t N\ N7
(i) () =r
147 r
This inequality follows by the weighted AM-GM Inecquality, as follows
141 soa\T ~ -~
(r ) (:)SHr L 2_1%2
1+r r 1+2r14r 142rr 14 2r
Cuse = <y < z. We will show that

Fy(2,,2) < Fy (0,5 + 2,9) < F(0,1+1,7).

or

Since the right mequality is similar to the above one, we will prove only the
left mequality We have

F(O T+ ..,y) (:r Y, ) (I.+z)l+ryr_$l+ryr_y1+rzr_zl+-rxr.

Since
(42" 2 (x+2)(@" +27) 22" b2+ 2N
we gel
Fr0,z+z,y) — Fr(z,9,2) 2 272 +yr 2Tyt — g =
1++

( )2y (z—y)+yF (¥ —27) =
-1y > 0.

=y 2 (z— )+Z

= Yz

"(y"
Equality in (29) occurs for (z,y,z) = (0,1 + r,r) or any cyclic permutation
O
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1
Remark Inequalities (28) and (29) are not valid for 5 <r <1

*
12. Let x,y, = be positive real numnbers.
a)Ifr+y+:z=3and0<r< g, then
zy+yz+2" <3, (30)
by Ifz+y+z=r+1andr > 2, then
zy+yz+z <. (31)

Proof. Let G,(2,y,2) =2"y+y "z + 2"z
2r
a) Since the function f(t) = t3 is concave on (0,00), by Jensen's
Inequality we get

2y 2r

Go=u ()5 42 () 12 () <

:1:%4—* %+:1:z% & Gs
S(y+z+a:)(y 7Y ) :3(—2)

o
3
o

r

w|

y+z+z 3

Thus, it is enough to show that G3 £ 3 Since the function f(t) = V1 is
concave, by Jensen’s Inequality we get

2% +y?z + 22z
Ty+yz+zx

G% =zyVr + yz /¥ + 22z < (zy + y2 + 233)\/
We still have to show that
(zy + yz + 22)(2y + y2z + 22z) < 9.
Write this inequality in the homogeneous form
27(zy + yz + 22)(z%y + 22 + 2%z) < (z +y+ 2)° (32)

Suppose that z = min{z,y,z}. Settingy =z +p and 2z = z + q (p >0,
g 2 0), inequality (32) becomes

27(p* — pg+ ¢*)2° + 9B2® + 3(p + q)Cz + D > 0,
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where
B = 4p*—6p’q+-3pg*+4q°, C = 5p°—12p%q+6pg+5¢°, D = (p+q)°—27p°¢*

The last inequality is true since

1 2 9
B = (—P—Q) (7p+4q) +=p° >0,

2 4
2 3 25 4 3
C = (p—2q) (P+Q)+6P(ZP—Q) +gP+a >0,
p P 5 3 71°
r 9 q 3 2 5/ (P q 3 2
(o S48, 2 2) _ > 2y (41 - -
D (3+3+3+2+2) 27”—[5 (3) (2) 27p°q
209 4 ,
= — >
10g” 9 20

Equality in (30) and (32) occurs for (z,y,z) = (1,1,1).

b) We will present an elegant solution posted on Mathlinks Inequalities
Forum by Gabriel Dospinescu. Using the assumption z = max{z,y,z}, he
proved that

Gr(2,9,2) S Gr (2 +2,y+£,0) < Gr(r,1,0). (33)

The left inequality of (33), namely

zZA\T z r ,,
(+3) (e3)zeveveses

z

can be obtained by adding up the below inequalities multiplied by ¥ and 5

respectively:
(9: + g) >a"+y s,
;
(:1: + %) > 22" 1.
To prove these two inequalities, we notice that
) = (1) 2o (14 5)
(m + 5) - 2r/) = 2

Since

2 z
>z (1 + 5) =z 27 1z

IET +$r—1z 2 z7 +y7"—1‘?’v
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and

"+ e > g el = sz"l,

the conclusion follows.
The right inequality of (33) has the homogeneous form

; 3:+y+2)'+1 ( z)'( z)
T rJgre > z z
" r+1 =\F*t3) W*3

Z
Using the substitution ¢ = (y + —2—)/(3: + —) , reduces it to

41
(rt+r) S rt.
r+1 -

By Bernoulli’s Inequality, we have

r+1 t— T+1 t—1
(rt+r) :(1+r 1) 21+(r+1)r -

o[ N

r+1 r+1 r+1
and the conclusion follows. Equality in (31) occurs for (z,y,z) = (r,1,0) or
any cyclic permutation : O

Remark 1. In the following section of this chapter (problem 33), we will
show that inequality (30) holds for 0 < r < ry, where r; = 1.558 is a root of

the equation
(14 )" = (3r)". (34)

Remark 2. Inequality (31) was published in Vietnamese journal
"Mathematics and Youth”, 1996 On the assumption z = max{z,y, 2},
we can prove that inequalities (33) are valid for r > rp, where

In2

= — =~ 1.71.
In3—1In2 171

70

Then, we can say that (31) is valid for any r > ry. Moreover, we conjecture
that (31) holds true for r > ry, where r; ~ 1.558 is a root of equation (34).

*

13. Let m > n > 0, and let z,y,z be positive real numbers such that
gMIR p MR L gmAn = 3 Then

.’L'm ym Zm

— 4+ + =23 (35)

yn zn In -



94 2. Starting from some special fourth degree inequalities

2n m+in m+in
¢ =22 ,b=y =z and

Proof Usmg the substitutions p =

\ m+n’
=3, we have to show that a® -+ b 4 ¢? = 3 yields

o=

~
~

2-p b2—p 2—p
a ¢
- > 3.
bp I cP i af

Write this inequality as

CL2 b2

(@b t oy ' Teap

Applying Jensen’s Inequality to the convex function f(u) = — we get
u

a? b2 ¢? a? + b% + ¢? 3itr
> — _
(ab)? " (be)P " (ca)? = (a2.ab+b? betc? ca\’  (aBb+bictcia)?
a? + b2 4 ¢?

To end the proof, it suffices to show that ab+b3c+c®a < 3 This mequality
immediately follows from

(a® + b2 + ¢1)? > 3(a®b + Be + o),
which is just (1) Equality occurs for (z,y,2) = (1,1,1) O

Remark. The above inequality is a generalization of the below statement,
posted on Mathlinks Inequalities Forum by Michael Rozenberg.

e If n, z,y,z are positive numbers such that 2771 4 y2n+! 4 23+l = 3,
then

14. Let a,b, c,d be non-negative real numbers. If p > 0, then

(1 +p$) (1 1 pcid) (Hpﬁ) (1 +pai+b> > (1+p)?

Proof This inequality is well known for p = 1; that is

(a+b+)(b+e+d)c+d+a)d+atb)>d(atb)btc)ct d)(d+a)
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Since (a+b+c)? > (2a+6)(2¢c+b) and (2a+b)(2b + a) > 2(a +b)2, we have

[T(a+b+c)? > [[(2a+b)(2c+ b) = [[(2a + b)(2b + a) > 2* [ (a + b)?,

and the above mequality follows (] is cyclic over a, b, ¢)
Another proof of the same particular case is based on the inequalities

(a+b+e)(btctd) > (b+c)atbtctd >20b+c)/(a+b)(c+d)
Then,

[[ed b+ =T[(a+b+c)b+ec+d) 2
> 2 T[(b+ o)/ (a+ b)(c+d) = 2* T (e + b)?

a b
In order to prove the original mequality, denote 2 = s y=- T d
¢
2= nd { == ——. Since
d+a @ ¢+ b

H(l +px)2l+platy+z+i) +p2(ry+yz+zt+ tr 4 xz+ yt),
it suffice to show that
rHy+z+t>2

and
zydyz+2gttte+zz+yt> 1.

The inequality z + y 4 2 +¢ > 2 is the well-known Shapiro’s Inequality
for 4 positive numbers. It can be derived as follows

b 2
a N 4+ + d > (a+b4c+d) > 9
btc ctd dta a+bT albtc)+blctd) Feld+a)+datb)

The left inequality follows by the Cauchy-Schwarz Inequality, whereas the
right inequality reduces to the obvious inequality (a — ¢)2 + (b—d)2>0.

The inequality 2y + yz + 2¢ 4+ 1z + 2z + yt > 1 can be derived using the
lequalities

> : -(a — ¢)? —d)2
:L'I+~_Izzb(:+da+(a c) >0 y+t—_;t ab+cd+ (b—d) >0
2 2(b + c)(d + a) 2 20a-+b)(c+d) ~

and the identity
zx(l+y+t)+y l+a+2)=1.
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Indeed, we have

T+ z +t
acy+yz-|-zt+t:c+:1:z+ytz—2—(y+t)+y—2—(:c+z)+a:z+yt2

>zz(y+t)tyt(z+2)tzetyt=z2(l +y+¢t) +yt(l + 2+ 2) =1,

and the proof is finished
There is equality for eithera=c=0o0r b =d=0. 0

*

15. If a,b, ¢ are positive real numbers, then

L+L1111>3(1+1+1
4a 3a+b 3b+c 3c+a

). (36)

Proof. We present the author’s solution, which emphasizes that (36) is an
ingenious consequence of the special inequality (1).

Actually, we will prove that for any positive t, the following more general
inequality holds )

4b+%+a+b+b+c+c+a -

>0

e p4b pdc t2(a+b) t2(b+;) t¥c+a) $3a+b $3b+c $3c+a
ZE+E+E+ a-+b + btc * cta (3a+b+3b+c+3c+a)

For t = 1, this inequality turns into (36) Denoting the left hand side by
f(t), the inequality becomes f(t) > f(0) We see that it suffices to show
that f/(¢t) >0 for t > 0 Indeed,

F(t) = the-1 pab=1 4 ple=1 4 o (t2a+2b—l 4 g2b42e=1 4 t2c+2a—l) _
-3 (t3a+b—1 + t3b+c—-1 + t3(:+a.—l)
and letting > = t“_%, Yy = tb_%, z= tc_%, the inequality f'(t) > O reduces to
oyttt 2(:7:23;2 oyl + z212) > 3 (23y+ Wiz + 23:1:) ,
which is just (1). Equality occurs fora=b=c. O

Remark Another similar problem is the following
If a,b, c are positive real numbers, then

r 1 1 1 1 1 1 1 1
1r. 1.1 > 2( ) 37
wtmt et oo Torse T orse 2 2 \3aq0 T 3bre T 304 (37)

( Vasile Cirtoaje, MS, 2005)
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This inequality is a particular case (¢t = 1) of the inequality g(t) > 0,
where

t4a t4b t4C tﬂ-+3b tb+3c tc+3a

)= —+ — + — —~
0=ttt armtrrse T orsa

( t3a+b t3b+c t3c+a )

3a+b+3b+c+3c+a

In order to prove that g(t) > g(0), it suffices to show that g’(¢) > O for t > 0
We have

gl(t) = a1 1 t4b—l + -1 + ga+3b—1 + z:l:o+3c—1 + get3a—1_
-9 (t3a+b—1 + t3b+c—1 + t3c+a—1)

Denoting z = t“‘%, y = t-% and z = tc‘%, the inequality ¢'(t) > 0 becomes
2 4yt + 2t oyt + yz3 + 22 > 2(2:3y + 422 + 232:),
which is just (7). We have equality for a = b = ¢.
*

16. If z,y,z are non-negative real numbers satisfying z +y + z = 3, then

x Y z >3

my+1+yz+1+z:r+1‘_§' (38)

Proof. Since the Cauchy-Schwarz method fails in proving this inequality,
we have to choose between expanding and using a suitable hint. We will
approach the second way The hint is using the relations

2

T zly y Yz z 22z

=T — ’ :y— ' =z
zy + 1 zy+1" yz+1 yz+1" zxr 41 zz+1

1

to transform (38) into

z2y y2z 2%z

:L'y+1+yz+1+z:r:+1

3
=

IA

By the AM-GM Inequality, we have

zy+ 122y, yz2+1>2/yz, 22 +1>2 zz.
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Consequently, it suffices to show that
x2y Y2z 2%z

<
2 /%7 + 2./7% N

3 N
2 b}
that is

/2y +yyz + 2vze <3

This inequality has the homogeneous form

(z+y+2)° >3 (2yZy + yy/Uz + 2V2z).

Replacing z,y, z by 22,32, 22, respectively, we get just inequality (1)
Equality occurs in (38) only for (z,y,2) = (1,1,1) O

Remark 1. A slightly more general statement is the following
Let x,y,z be non-negative reul numbers satisfying z +y + 2z = 3. If
0<p<1, then
x z 3
+ 2
ry+p yz+p 2z+p l+p

(39)

Proceeding as before, we can rewrite the inequality as

z2y y2z 2%z 3
+ <
ry+p yzt+p zx+p” 1+p

By the weighted AM-GM:-Inequality, we have

sy tp=1-ay+p-12(1+p)ey)™ 175 = (1 +p)(zy) ™.

Hence,
2
Y < a(ay) T,
zy+p~ 1+p
and similarly,
2 2
ve o 1 y(y2)T 7, —— < z(2x) 4>
yz+p~ 1+p 2zx+p~ 14p

Thus, it suffices to show that

:J:(a:y)r%i + y(yZ)TE"’ aE z(z:r)% <3

1
Since 0 < P < —, this inequality coincides with (28)
1+p~ 2
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We congecture that inequality (39) is valid for 0 < p < pg, where

3
—) in (39) yields the

po =~ 1.5874. Replacing the triple (z,y,2) = (O’Z’ 1

27
necessary condition p < 17 ~ 1.588.

*

17. If z,y, 2z are non-negative real numbers satisfyingz + v+ 2 = 3, then

z Y 2
y2+3+z2+3+$2+3

>3 (40)

Proof. By the AM-GM Inequality, we have

Y 43=9 4 141+1> 45

Hence,
3z zy? ry? 1 3
5 =T—— >r——~"—=1——1Iy?,
y*+3 y°+3 4,/y 4
and similarly,
3y 1 z% 3z . 1 z:z:%
2y3=¥T gV mg 2t

Using these results, it suffices to show that

3 a 3
zYy? +yz? + 22 < 3.
This inequality is just (30) for r = 3 Equality occurs in (40) only for
(z,9,2) = (1,1,1). O

Remark. The following more general statement is valid:
Let z,y,2 be non-negative real numbers satisfying z +y+ z = 3. If
0<p<3, then
z Y z 3
: + + >
yv'+p 2Z2+p 24+p T I+p
By the weighted AM-GM Inequality, we have

(41)

2
Yy +p> (14 pyTs.
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Hence,
2 2
w1
y +p y*+p (1+ p)yT+e 1+p
and similarly,
Py 1 22 Pz 1 2p
>y — zT+p —_— >z zri+e,
z2+p_y 1+py " 14 px? T 1+p
Consequently, if the below inequality is true,
2
y1+P +y- 2T + 2 - :1,‘_24“& <3,
: . 2p 3 :
then (41) is also true. Since 0 < Tip < 3 this inequality follows from

(30).

We conjecture that inequality (41) holds for 0 < p € 3+2v/3 Replacing
the triple (z,y,2) = (0, 3 -3, \/ﬂ in (41), we get the necessary condition
p< 3+ 23

*

18. If a,b,c are positive numbers satisfying abc =1, then

a b c
> 1.
\/J.')+8Jr\/c+8+ a+ 21 (42)

Proof. By Bernoulli’s Inequality, we get

— T
vb+8 1+b 1<1 b 1:b+1-
3 V 9 18 18
Vb+8—b+17 Vc+ c+17 Va+ a+17

and it suffices to show that

i, b ol

b+ 17 " c+17  a+17° 6"

Then

Substxtutmg for \/_ ? for Vb, and = for \/c to obtain abe = 1 (z,y,z > 0),

the mequahty becomes

3 3 3
z
z Yy >

1
y(1722 + 22) + z(1722 + y?) + 2(17y? + 22) — 6
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By the Cauchy-Schwarz Inequality, we have

3 3

T 3
Y z
21,0 T ooy T % 2
y(17z2 + 22) * 2(17y? + 22)  2(172% + o)
> (22 +9* + 22)L
T xy(1722 + 22) + y2(17y? + 22) + 22(1722 + y2)

Therefore, it is enough to show that
6(z2+ o2 + 22 > 1722y + 22 + Bz 4 zyz{z +y + z),
which follows by combining (1) and
(22 + 4% + 22)? > 3zy2(z + y + 2).
The last inequality can be obtained as follows
(Z*+ 42+ 282 > (zy + yz + 22)% > 3zyz(z + y+ 2).
Equality occurs in (42) only for (a,b,¢) = (1,1,1).
*
19. If a,b,c are the side-lengths of a triangle, then
a) 3(a% + b% + c3a) > (ab+ be + ca)(a? + b2 + ?),
b) 9(ab + be + ca)(a2+b2+c2) > (aerb-{-c)4
Proof. In order to prove (43), we write it as cyclic sum
Y ab(2a? — b2 — %) > 0.

Since

X:ab(Za2 — b - c2) = Z ab(a?' - b2) - Zab(cz _ a2) _
= ab(a® - %) - Y " be(a? — b2) = Y (a® — b%)(a - c)b,

the inequality becomes

> (e - b)) (a—-c)b > 0.

(43)

(44)



102 2 Starting from some special fourth degree inequalities

Using now the classical substitution ¢ = y+ 2, 6 = z4+ 1z, ¢ =+ y
(r,y,2 > 0), we have

Z z(y—x)(22—2%)= Z(yz3—:v2yz—xz3+:r:3z) = Z(Qx3z—x2yz—xz3),
the inequality transforms into
Z(:r:4 - :;-:2‘5,(2 + 453z — 22%y2 — 2:::23) > 0.
We can find this inequality by adding the below inequalities
z:(:t:4 — zy? 4 2232 — 2223) > 0,
2 Z(x3z — x2yz) > 0.

First inequality 1s just {(10), while the second inequality follows by the
Cauchy-Schwarz Inequality applied to the triples (J:\/x:,y,/y:r:,z,/zy) and
(Vo V7 VZ).

(232 + v%x + 22Y) [y + 2 + z) > zyz(z +y + 2)*
To prove (44), denote A = a® + b + ¢ and B = ab + bc + ca. Since
9(ab+ be + ca)(a® + b2+ c*)—(a+b+c)*=9AB—(A+ 2B)* =(A—B)(4B—A)
and

(a—b)2 + (b—c)? + (c —a)?
5

we still have to show that 4B — A > 0 Indeed, we have

A—B= > 0,

AB— A>2(ab+be+ca)—al—b*—cf =
= (Va+vh+ve) (—va+ Vb ve) (Va—vVb+ve) (Va+Vb—ve) > 0.

Equality occurs in both (43) and (44) only for an equilateral triangle a
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Remark. From (43) and (44) we get

3 3 3 4
ab+b3c+ca2(a+§+c) ‘ (45)

The following more general statement is valid:
If a,b,c are the side lengths of a trangle and r > 3, then

r r r r+1
abb—l-bc+ca2 a+b+ec ‘ (46)
3 3

Indeed, from the weighted Power-Mean Inequality and {45), we have

1
(a’b+b'c+cra)%> a®b+ b3¢c + fa §>a+b+c
b+c+a = b+c+a = 3 ’

and from here, (46) follows

*
20. Let a,b,c be the side-lengths of a triangle. If r > 2, then

3(a"b+bc+ca) > (a+b+ )@ b4+ b e+ ¢ La). (47)

Proof. By the weighted Power-Mean Inequality, we have

(a’b +bTc+ c’a) = S a b e+ a
at+b+c a+b+e )
Thus, it suffices to show that
3(a’b+ Vet cTa) (a’b+b"c+c"a =
{a+b+c¢)2 — at+b+te ) ’

which is just (46). Since (46) is valid for r > 3, it follows that (47) is also
valid for r > 3

For r = 2, (47) reduces to

b c b
2({-++ ) > -+ - St +3 (48)
b b
. . . L. a-+c
Assuming a = min{a,b,c} and using the substitution b = =z + 5

inequality (48) becomes

(2c—a)x2+(x+%) (a—c)2 >0
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This inequality is true, because 2¢ — a > 0 and
dr+3a=a+4b—2c=2{a+b—-c)+(26—a)>0

Inequality (48) becomes equality only fora=b=rc
To prove (47) for all r > 2, we rewrite 1t in the form

A" W(2a—-b—c)+ b e(2b—c—a)+ T ral2c—a—b) > 0. (49)

We claim that the following more general statement holds.
If a, b, c are the side-lengths of a triangle and f(x) is an increasing posi-
tive function on (0,00), then

ab{2a —b— ¢)f(a) + be(2b— ¢ — a) f(b) + cal2¢ —a —b)f(c) >0  (50)

First notice that for f(z) = ™2, r > 2, (50) turns into (49) In order
to prove (50), denote its left side by E(a,b,¢), and then consider two cases.
a>b>canda>c>b

Case a > b > ¢ Since f(a) > f(b) 2 f(c), we have

E(a,b,c) > ab(2a — b — c) f(b) + be(2b — ¢ — a) f(b) + ca(2c —a —b) f(c) =
=b[2(a—b (a—c) +ab— c*] f(b) + ca(2¢ — a— b) f(c) >
> b[2(a—b)(a—c) + ab— ] f(c) + cal2¢ — a — b) f(c) =

=abc[2(§+§+%)—(%+g+£)—3]f(c)-

Taking account of (48), we get E{a,b,¢) >0
Case a > ¢ > b. Since f{a) > f(c) = f(b), we have

E(a,b,c) > ab{2a — b —¢)f(c) + be(2b — ¢ — a) f(b) + ca{2¢ —a—b)f(c) =
= a[(c — b)(2¢— a) + b(a — b)) f{c) + be(2b — ¢ — a) f(b).

Sice
(c—b){2c—a)+bla—b) > (c—b){b+c—a)+bla—0b) >0,
we get

E(a,b,¢) > a[(c —b)(2¢ — a) + b{a — b)] f(b) + be(2b—c — a) f(b) =
:abc[2(2+§+%)—(%+g+§) —3]f(b)20
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Remark. The following inequality is sharper than (48).

3 £+5+3)22(3+9+5)+3 (51)
a b ¢ b ¢ a

(Vasile Cirtoaje, MS, 2004)

Proceeding in the same manner as in the proof of (48), we obtain the

inequality
(8c—2a)(2b—a—¢)? + (4b+2a—3c)(a~c)? > 0
It is true, because 3¢ —2a > 0and 46+ 22 —3c=3(a+b—c)+ (b —a) > 0.
*

21. Let a,b, c be the side-lengths of a triangle. If r > 2, then
a"b{a —b) + b"c(b—c) + c"a(c—a) > 0. (52)
Proof. For r = 2, the inequality turns into the well-known inequality
a®b + b3c + Ba > a?b? + 622 + ol (53)

Using the substitution a =y +2, b= 2+, c=z 4+ y (z,y,z > 0), this
inequality reduces to

oy +y2° + 22° > zye(m + y + 2),
which follows by the Cauchy-Schwarz inequality
(32 + 43z + By +z+ r) > ryz(T + ¥ + z)2

Let us denote now by E(a,b,c) the left side of {52) and assume, without
loss of generality, that ¢ = max{a,b,c}. We have

E(a,b,a) = ab(a - b)(a""! —b""1),
E(a,b,¢) — E(a,b,a) = (c— a) [a(c" — b") = (c - b)bT],

whence

E(a,b,c) = abla — b)(a™™* —b""Y) 4 (c— a)[a(c” = b") — (¢ — b)b"]
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Writing now the product ab as
ab=cla+b—c)+ {c—a)(c—b),
we get
E(a,b,¢) = cla+b—c)a—b)(a™ ' —b" 1)+
+{c—a)[(c—b)la—b)(a" ! =" ) +afc" —b) — (c— b},
E(a,b,c) =cla+b—c)(a—b)(a™ " =4 ")+
+afc—a) [(a—b)(c—b)a" 2 (¢ =677
Since
(a—b)le—bla" 2 +efcm b1 =
=(a—b+e)c—b)a 2+ ¢ [—(c —b)a" "ty — b’”_l] =
—(a—b+c)c—bja 4 clc—b)(c" 2 —a"E) +be(c" 2= b7,
we obtain the final form
E{a,b,c) = c(a+b—c)(a—b)(a"1—b"*l)+(c—a)(c—b)(a—b+c)a'_1+
+ ac(c — a){e— b)(¢"2 — a""?) + abe(c— a) (i), (54)
For » = 2, this identity has the form
a3b + b3e + Ba — a?b? — b2e? — cfa’ =
=cla+b—c)la— b)2 +ala—b+c)(c—a)(c—b)
From (54) it is clear that r > 2 together with ¢ = max{a,b,c} imply
E{a,b,c) > 0. Equality occurs only for an equilateral tiiangle
Another interesting solution was posted on Mathlinks Inequalities Forum
by Mikhail Leptchinski It two of a,b, ¢ are equal, then (52) is valid. Other-
wise, consider that ¢ = max{a, b, c}. On the other hand, since the inequality

15 homogeneous, we may assume that b = 1 This imples either 2 <1 <¢
orl<a<ec Let

f(z) = a®bla—b) + b c(b—c) + Fa{c—a) = a"(a—1) +c(l —¢) +ca(c—a).

According to (53), we have f(2) > 0. Therefore, it suffices to prove that
f(z) > f(2) for x > 2. We have

f'(z) = a®*(a—1)Ina+cafc—a)lnc

Since (a—1)Ina > 0 and (c¢—a)Ine > 0, it follows that f'(z) > 0 Therelore,
f(z) is strictly increasing and hence f(z) > f(2) O
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Remark An interesting generalization of (52) is the following:
Let a,b, c be the side-lengths of a triangle If f(x) is an increasing positive
function on (0,00), then

a® fla)b{a — b) + b2 f(b)e(b — ¢) + c* fe)ale — a) > 0. (55)

(Dary Grinberg, MS, 2005)
For f(x) = "2, the inequality turns into (52). To prove (55), denote tle
left side by E(a,b,c), and then consider the following two cases a > b > ¢
anda>c>b.
Case a > b > c. Since f(a) > f(b) > f(c), we have

E(a,b,c) > azf(c)b(a —b) + b2f(c)c(b —c) + c2f(c)a(c —a)=
= f(c) [a®b(a — b) + bc(b — ¢) + cPa(c — a)] > 0.

Case a > ¢ > b. Since f(a) > f{c) > f(b), we have

E(a,b,c) > a®f{a)bla — b) + bzf(a)c(b —c)+ c?'f(a)a(c —a) =
= f(a) [a®b(a = b) + b2c(b — ¢) + *a(c — a)] 2 0

*
22. Let a,b,c be the side-lengths of a triangle. If0 < r < 1, then
a®b(a” — b7) 4 ble(b” — ¢") 4 Fa(c” — a™) > 0. (56)

Proof. We observe that for r = 1, the inequality transforms to the well-
known inequality

a®b + b3c 4 ca > a?b? +b%c? 4+ c%a?

On the other hand, we see that the inequality is true if two of a,b,c are
equal For example, if o = b, the inequality reduces to

ac{a —¢)(a” —c") 2 0,

which is clearly true We will consider now that a, b, c have distinct values
and a = min{a,b,c} Rewrite the inequality in the form

a1 (ab — ) 4 6" (be — a®) -+ ¢"HH{ea — 62) > 0 (57
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Since the inequality is homogeneous, we may cousider a = 1
This assumption yields either b<c<lorec<b< 1 Let

flz) = a* ab — ) + b+ (be — a®) 4 &1 (ca—b?) =
=b—c® + b5 (be — 1) + & (e — BY).

We must prove that f(z) > 0 for 0 < z <1 Note that f(0) = 0 and, m
accordance with (53), f{1) >0 The function f(x) has the derivative

f'=) _ (Q)HI (be — 1) b + (¢ — b?) Inc.

T+l c

Case b < ¢ <1 Since {bc — 1)Inb > 0 and 0 < g < 1, the function
f'(x) 1s strictly decreasmg We claim that f/(0) > 0 Indeed, if f(0) <0,
then f/(z) < 0 for 0 < = < 1, the function f{z) is strictly decreasing on
[0,1), and therefore f(1) < f(0) = 0, which is not true. Hence f'(0) > 0,
as claimed Since f'{z) is strictly decreasing and f'(0) > 0, two cases are
possible eitlier f/(z) > 0 for 0 < z < 1, or there exists z; € (0,1) such that
f{x) =0, f'(z) >0 for x € [0,z;) and f'(x) < O for x € (z;,1] In the
first case, f{x) is strictly increasing on [0,1], and hence f(z) > f(0) =0 In
the second case, f(x) is strictly mncreasing on (0, z,] and strictly decreasing
on |z;.1] Consequently, f(x) > min{f(0), f(1)} = f(0) =0

Case ¢ < b < 1. Let us show that f/(0) > 0 We have

F(0) = b(be — 1) Inb + c{c— b*) Inc.

If ¢ — b2 <0, then f'(0) > 0, because (bc — 1)Inb >0 and (¢ — b*)Inc >0
If c— 6% >0, that is Inc > 21nb, then

£/(0) > blbe — 1)Inb + 2¢(c — b?) Inb = (2¢* —b*c — b) Inb

Since Inb < 0 and 2¢2 —b2e—b < 22 — ¢ —c = —c(c—1)? < 0, it follows
that f7{0) > 0, as claimed. To finish the proof, we observe that the function

b
f'(x) is strictly increasing, because (bc —1)Inbd > 0 and p; > 1 Therefore,
f'(z) > f'{0) > 0, f(z) is strictly increasing, and hence f(x) > f(0) =0 for
0 < 2 < 1 Equality occurs only for an equilateral triangle O

*
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23. Let a,b,c be the side-lengths of a triangle. If z,y, z are real numbers,
then

(ya?+2b2 +xe?)(za® + xb® +yc?) > (zy+yz+2z)(a®b?+b2c + a?)  (58)
Proof. We write the inequality as follows:
22b%c? + y2cla® + 22a%? > yza®(B® + 2 — a?) + zxb? (P + a® — b))+
+ zyc®(a? + b2 — ¢?),

2 g2 22 yz(b2 +c?— a2) z:r(62 +a®—b? :n:y(a2 + b — c2)
ZTptasz b2¢? c?a’ a2h? ’
2 y® 2 2yzcosA  2zzcos B 2xycosC
S+t 2 + + 577
a b ¢ b2c2 cta? a2b

2 2
(E—ECOSC—ECOSB) +(gsinC—EsinB) >0
a b c b ¢
Since the last inequality is clearly true, the proof is complete Equality
. o X Yy z
occurs if and only if poinlie il § 0
1 1 1 )
Remark 1. For z = Y= and z = —, from (58) we get again the
c a

well-known inequality
a®b + bPc + Ba > a?b? + b%c? 4 c2a?.

1 1

1
Remark 2. For x = —, y = — and z = —, from (58) we obtain the
¢ a b2

elegant asymmetric inequality of Walker (Math. Mag. 43, 1970):
2 2 2
a® b ¢ 2 .2 o (1 1 1
3(F+c_2+¥) 2@ +b e )(E“Lb_?*c_z)'

2.3 Another related inequalities

1. Let z,y, z be non-negative numbers. 1f 0 < r < V2, then

\/.7:‘1 +yd + 24 4+ r\/x2y2 + %22 + 2222 > (1 4 r)\/:r:3y + 43z + 23,
{Vasile Cirtoaje, MS, 2004)
2. Let z,y, z be real numbers. If =1 <7 < 2, then

¥z —y)(x —ry) + vy —2)(y —rz2) + 2(z—z z—rx >0
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3. Let z,y, z be non-negative numbers. If -2 < r < 2, then

2 2

2(x = y)(? = ry?) + yly — 2)(o — 72%) + 2(z — 2)(22 — ra?) > 0
4. If ,y, z are real numbers, then
(v —9)(2 + ¥ + (y— 2)(2y + 2 + (= 2)(22 +2)° 2 0
5. If z;,x2,. ,xp arereal numbers, then
(@1 —22) (31 +2)% + (w2 —x3) (Bra+a3)®+ - + (Ta—21)(3Tn+21)° 20,

6. If =, y, z are non-negative numbers, then
(x —y)(3z + 2y)° + (v — 2)(3y + 22)° + (2 —x)(32 + 2¢)° > 0
7. Let z1,z2, .,z, be non-negative numbers If r > Vis1 ~ 1.7024,
then
(z1—xz3)(rzy+22)° +{xa—23)(rz24 232+ - +(Tn—31)(rTnatz1)? 2 0.

8. If z,y, z are real numbers, then

(x—y)f/m+(y—z)m+ (z—xz)V2z +x >0.
9. If z,y, z are real numbers, then

(—y)x+22°+(y—2)(y+22)° + (2 —2)(z + 29)° 2 0
10. If z,y, =z are real numbers, then

(z—y)Vat 22+ (y—2)Yy+ 22+ (2—2){z+2y 20

Vv3-1

11. Let xy,x9,.. ,Z, bereal numbers. f0 < r < , then

:n‘li+:.c§+---+xi+r(x1x%+xgx§+- +xnx?) >
>{1+r) (x?x2+a:ga:3+- +:r?1:c1).

12. f 27, x3,.. ,Tn are positive numbers, then

1
a:'f-i—a:g-}-- -+xi+§ (x,a:g+xgxg+- -+:nnx‘?)2

3
>3 (23z2 + 2hws + -+ zha).
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13. If z,y, z are real numbers, then
z(z+y)° +y(y+2)° +2(z+2)° >0
(Vasile Cirtoaje, GM-B, 11-12, 1989)

14. If a,b, ¢ are positive numbers, then

1+1+1_1_1 1>
2a 26 2¢ a+b b4ec c+a”

1 1 1 1 1 1
> - - - .
—4(3a+b+3b+c+3c+a a+3b6 b+ 3c c+3a)
1
15. If z,y,2 € [—2—,2}, then

s(f+2+3)25(2+3+5)+9.
y 2z Ty oz

1
16. Let p = \/4+ 3+/2, and let z,y,2 € [—,p] Prove that
P

Izy +yz +2z)(2* +y° + 2%) > (z +y + 2)".

(Vasile Cirtoaje, Moldova TST, 2005)

17. Let z,y,2 > § such that z + y + z = 3. Prove that
m2y2 + y222 2222 2 zy+yz + 2z
18. If z,y, z are real numbers, then
3(m4+y4+z4—m3y—y3z—z3m) > z2(y—z)2+y2(z—m)2+z2(m—y)2.
(Vasile Cirtoaje, MS, 2005)
19. If z,y, z are real numbers, then
'yt b2 —ayz(z+y+ z)22\/§(z3y+y3z+z3m~my3—yz3—z:1:3).
(Pham Kim Hung, MS, 2006)
20. If z,y, z are non-negative numbers, then

e 17(m2y2+y222+z2z2) > 6(z+y+z)(zly+yla+2%2).
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21. If z,y, z are non-negative numbers, then
(@2 - y2)? 2 VE S ay(z — z)?
22. If z,y, z are non-negative numbers, then
2yt 4 A+ 5(zly + 1z 4 2P2) > 6(c2y? + y22? + 222?)

23. Let 2,3,z be non-negative numbers, no two of them are zero. Prove

that

2 -yz y*-zz 22—zy

T4y y+ 2 2+

>0
24, If z,y, z are real numbers, then
3zt + vt + 2Y) + 4(2Py + P2 + Bx) > 0.
(Vasile Cirtoaje, MS, 2005)

25. Let z,y, z be positive numbers such that z + y + z = 3. Prove that

z Yy .=
1+y3 1428 1428

3
2> =.
— 2
(Bin Zhao, MS, 2006)

26. Let a,b, ¢, d be non-negative numbers such that a+ b+ c+d = 4. Prove
that
3(a? + b2 + & + d?) + dabed > 16.

(Vasile Cirtoaje, MS, 2004)

27. Let a,b, ¢, d be positive real numbers such that a4+ b+ c+d=4 Prove

that
2 a b c d

> 2
TR Tt T+ T Tra =
(Russian Winter Olympiad, 2006)

28. Let a,b, ¢ be non-negative numbers such that a+ b+ ¢ =1 Prove that

2bc+3  2ca+3 2ab+3<E
a+1 b+ 1 c+1 — 2

( Vasile Cirtoaje, MS, 2005)
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29. If a,b, c are the side lengths of a triangle, then
a?(a+b)(b—c) + b*(b+ ¢)(c — a) + *(c+ a)(a — b) > 0.
30. If a,b, ¢ are the side lengths of a non-equilateral triangle, then

aBb+b3c+Ba—ab? —b2c? —c2q2

> min{b+c—a,c+a—b,a+b-
T et Fa e 2 minlbte—a,eta=batb—c)

31. Let a,b,c be the side lengths of a triangle. If z,y, z are real numbers
such that z + y + 2 = 0, then

yza(b+c—a)+ zzb(c+ a—b) + zyc(a+ b—c) 0.
32. If a, b, c are the side lengths of a triangle, then
(2a% - be) (b — ¢)? + (267 — ca)(c — a)? + (2¢% — ab)(a — b)® > 0.

33. Let z,y, z be non-negative real numbers. If 0 < » < m, where m =~ 1.558
1s a root of the equation

(1 + m)1+m — (3m)m,

then

2y +y 2427z < (:n +y+ z)"*‘1
3 - 3 '
(Vasile Cirtoage, MS, 2005)

2.4 Solutions

1. Let z,y,z be non-negative numbers. If 0 < r < /2, then

VIt oyt 2ty ry/22y? + y222 4 2222 > (14 7)y/23y + 432 + 23z
Solution. Squaring transforms the inequality into

Z x4+ r? ZszQ + 27\/(2 m4) (Z m2;/2) > (1+r)? Z z3y.

By the Cauchy-Schwarz Inequality, we have

V(D 2t) (222 = Yoty
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Thus, it suffices o show that
Zm“ + r? Zy232 > (1+r?) Zmay.
For » = 0, this inequality is true since
byt =2y — P2 = }-Z 3z4 + ¢ —4m3y) =
421‘— (322 + 2zy + 3?) > 0.

For 0 < r < /2, the inequality can be rewritten as

7 (e - Ta%) 2 Yoy~ Dot

Since Y x4 — Y 23y > 0, it suffices to consider r = /2 In this case, the
inequality is equivalent to (1) There is equality if and only if z = y = 2.

*
2. Let x,y,z be real numbers. If —1 < r < 2, then
e}z — y)(x - ry) + 3y — 2)(y —r2) + 22(z —2)(z — r2) 2 0.

Solution. Denote by E the left hand side of the inequality There are three

cases to consider.
Case r =0 We have

1
E=alty+2 —ay—’z - =23z -p)? 22’ + (w+p)] 20
Case 0 < r <2 We have
—E—T(m +yt+ 2t - 2y -yl - 2Ba) —2ly(z - y)-
- yPa(y — 2) — 2a(z - )

Since 24+ y + 2 — 28y —y32 — 232 > 0, it suffices to prove the inequality
for r = 2, when it becomes just (1)
Case —1 < r < 0. We have

— —1
—IE:T(m4+y4+z4—m3y—y3z—zsm)+
7.

+2y(z —y) + yla(y — 2) + 2% (2 — )
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Since ¢ 4+ y4 + 2% — 23y — y32 — 232 > 0, it suffices to consider r = —1 In

this case, we get

2_,2\2 2_ ,2)2 2_,2\2
E = o'ty 2l —atyl—y? - 20 = (z%=y*)* + (v ; )" + (2% —2*) > 0.

*

3. Let z,y,z be non-negative numbers. If —2 < r < 2, then
z(z —y)(=® —ry?) + y(y — 2)(v* — r2%) + z(z — 2)(2® — r2?) 2 0

Solution. For r = 0, this inequality is true (as shown above).
Case 0 < r < 2. We write the inequality in the form

1
- (:1:4 +yt 4 -2y — - 23:1:) > :L'y2(:z: -y + yzz(y —2)+ z:z:z(z — x)

Since z1 + y* 4 24 — 28y — %2 — 232 > 0, it suffices to prove the inequality
for r = 2; that is

ci+yit z4+2(:1:y3+yz3+z:1:3) > 2($2y2+y222+22m2) +23y+yz+ 202
Summing up the inequalities
(@ + 2 + 22)? > 3(2%y + 32 + A1)
and
2(:1:3y Fylz+ z3m) + 2(a:y3 +yz + za:3) > 4(:~:2y2 + y22% + z2m2),

we get the desired inequality. The first inequality is just (1), while the second
1s equivalent to the obvious inequality

zy(z - )% + ya(y — 2)% + zz(z — z)? > 0.
Case —2 < r < 0 We write the inequality as

-1
- (a:4+y4+z4—a:3y—y32—zsm)+my2(m—y)+ yzz(y—z)+zmz(z—a:) >0

Since z + y* + 2% — 2%y — 432 — 232 > 0, it suffices to prove the inequality
for r = =2 that is

(2?2 +y% + > Py+ e+ P+ 2zy® + y23 + 228 .
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According to (1), we have

(2 + 2 + 292 > 3(z%y + ¥z + 2%2)
and

(2% + 4% + 2%)% 2 32y’ + y2° + 22°),
whence the conclusion follows.

*
4. If z,y, z are real numbers, then
(z-y)2z+v)2+w—2)2y+ 2P +(2-2)(2242)*>0

Solution. Using the substitution 2z +y = a, 2y + 2 = b, 2z + 2 = ¢, which
is equivalent to
_4a—-2b+c _ 4db—2c+a z_4c-2a+b
the inequality reduces to (7):
at + b4 + & + ab® + be® + ea® > 2(a®b + b3c + Pa).
*

5. If x,,x2, .,Tn are real numbers, then
(21— 22) (321 +22)° + (22 —23) Bz2+23)*+ - + (2a—21)(3za+21)° 20

Solution. We will show that there is a real number ¢ such that the following
inequality holds for any real numbers z and y

(z -3z +y)° 2 o(z* - ).
Since
(z-y)3 +y)° —gqla’ - y") =
= (z—y) [(3z +9)® - g(=® + 2Py + 2® +¢%)] ,
we will choose ¢ = 16. For this value of ¢, we have
(z—1)(3z+y)* =16z —3*) = (2 - y)* [z +y)* + 4?] 2 0
Using now this result, we have (for n41 = 21)

Z(T1 $1+1 (3-'1:1 + $:+1 Z ( t+1) 01

i=1

which completes the proof Equality occurs only for 21 = 23 = -+ - = z,.
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*

6. If z,y, 2z are non-negative numbers, then
(z— )3 + 2 + (y - 2)(3y + 22)° + (2 — 2)(32 + 22)* > 0,
Solution. By expanding, the inequality becomes

19(:1:4 +yt+2Y)+ 27(5:3_1; +y3z2+ z3:1:) >
> 28(my3 +y2d + za:3) + 18(:1:2_1,,-2 +y22? + z2m2).

Since 2t 4 y* + 2% > xy® + y2® + 223, it is enough to show that

18(z? + y* + 24) + 27(z3y + y22 + 28x) >
> 27(zy® + y23 + 223) + 18(2%y? + 222 + 2%1?),

that is

2zt +y* + 2% + 3(2®y + yP2 + 282) >
> ?,(ar:y3 + yz3 + za:3) + 2(9:23;2 +y?2? 4 2%22)

This inequality follows by adding up the inequalities
Azt + v + 2%) + d(z%? + 1222 + 222%) > 6(zy® + y2® + 22%)
and
) 3(z%y + 332 + 2%2) + 3(z® + y2® + 22%) > 6(z%y? + y22% + 222%).

First inequality is equivalent to (1), while the second inequality is equivalent
to
zy(z — y)2 + y2(y — 2)2 + 22(z2 — 2)* > 0.

Also, we can prove the above inequality by adding the inequalities
2zt +y' + 2+ 22Py + 132 + 2B2) >z +y + 2z°)
and
(3 + 43z + 232) + (2d +y2t + 22%) > 2Azty? + 222 + 22 2,

Notice that the first inequality is of type (7).
Equality in the original inequality occurs only for z = y = 2.
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*

1
74 -1

(z1—z2)(rz1 4222+ (Zy—2z3)(rza +23)3 + - - +(zn—2))(rza+21)% >0

7. Letx1,z9, . ,x, be non-negative numbers. If r > = 1.7024, then

Solution. As above, it suffices to show that there is a real number q such

1
that the following inequality holds for r > ——— and any positive numbers
Vi—1
z and ¥
(z - y)(rz +9)° 2 g(z* —9*).

Since

(& —y)(rz+y)° —q(z? — ) =

= (z-y) [rz +v)* - q(=® + 2%y 4 z* + ¢°)],

. (r+1)°

choosing g = , we get

(2~ )z +)° - g2 = ") = 3 (= v)*(Aa* + Bay + Co?),

where

A=drt—(r+13 B=2r-1r2+4r+1), C=(r+1)>—4

1
For r > —=——, we have A >0, B> 0 and C > 0. Hence
vd—1
(z—y)(rz+v)° —gz* —3") 20
Equality occurs only for ) = 23 = -+ = zy.

*

8. If z,y, z are real numbers, then

(a:*—y)\3/2a:+y+(y—z)\3/2y+z+(z—a:)\/322+a:20.

Solution. Let 2z +y = a3, 2y + z = b° and 2z + = = ¢3. We obtain

4a3 — 23 + 8 463 — 2¢3 + 48 4¢® — 203 + b3
T = 9 y = 9 y 2= 0 ’
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and the inequality transforms into
at + b1+t 4+ a3+ b+ Ba > 2(ab® + b + cdd),

which is of type (7).

9. If z,y, 2z are real numbers, then
(- y)(z+22)° + (y - 2)(v +22)° + (2 — z)(2 + 2)* > 0.

Solution. Let 2+ 2z =a, y+ 2z = b and z+ 2y = ¢. We have
a+ 4b—2¢ _bt+dc—2a c+da—2b

e T e S
and the inequality reduces to
at + b+t aBb+ BPe+ Pa > 2(ab® + b + ca®),
which is also of type (7).
*

10. If z,y, 2 are real numbers, then

(z—y)Ve+2z+ (y-2)Yy+22+ (z2— )Yz + 2y > 0.

Solution. Setting z + 2z = a®, y + 2z = b3 and 2 + 2y = ¢, we have

a® + 4b3 - 2¢38 B3 + 4c3 — 243 3 + 4a3 — 23
= 9 7y= 9 )z: g ?

and the inequality reduces to (7)
a® + b + ¢t + ab® + bc® + ca® > 2(a®b + b3c + a).

*

11. Let zy,z9,...,z, be real numbers. Ifo<r< , then

a:‘f+mg+-~+mf‘+r(mlzg+x2mg+--'+mnm?) >

> (1+7) (2d2s + 2323 + - + 232,) .
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Solution. We will show that there is a real number ¢ such that the following

inequality holds for0 < r < and any real numbers z and y:

ot 4 ray® — (r+ 1):1:3y > q(z? — y9)
If this claim is true, we get the given inequality as follows (for z,,.; = z;)

n
Z [:L'f + T$i$?+1 37 mt-}-l] 2 Z q( 1.+1) 0

i=1
We have

zd + ra:y3 —(r+ 1)9:3y — q(a:4 - y4) =

= (z—y) [2° —ray(z +y) — ¢(e® + 2’y + =y’ + %))

1-2r

Choosing ¢ = —g Ve get

!+ royd - (r+ 1):1:3y — g(z? - y4) =
1
= (z —y)* [(2r + 3)2® — 2zy + (1 - 2r)y?] =

o R O
Equality occurs only forz; = z3 = -+ =z,
*
12. If z(,zq, . ,x, are positive numbers, then

1
i +2i+ ot (zsz3 + z223 + - -+ znzl) >
3
2> 5 (z?mz o SRR xiﬂn)
Solution, Write the inequality as

n
Z (me +zizty) — 31'-?3:1'4-1) =20,

i=1
or
Zﬂlz i— Tit1) (21'81' + 2i41) 2 0.

Equality occurs only for z; = 23 = -+ = zy,.
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*

13. If z,y, 2 are real numbers, then
2(+ Y + oy +2)° + 2z +2) 2 0.

Solution. Using the substitution y+ 2z = 2a¢, 2+ z = 2b and z + y = 2c,
the inequality becomes

at +b* + ¢!+ ab® + b2 + ca® > a®b + bPe + Fa.
This inequality is equivalent to
(a®—ab—b%)2 4 (b2 —bc—c?)? + (2 —ca—a?)? + a?b% + b2c? + c2a? > 0,
which is clearly true. Equality occurs if and only if z =y =2 =0

Remark. Similarly, we can show that the following inequality holds for any
real numbers z,y, 2.

z(z +9)° +y(y+2)° + 2(2 + 2)° > 0.
Using the same substitution, the inequality transforms into
a® + b8 4+ B 4 ab® + b¢° + ca® > a%h 4 boe + c5a,
which is equivalent to
> (a° + 2ab® — 240 +- %) > 0,

or
> (a® + b?)(a® —ab—b?)? > 0.

Equality occurs if and only if x =y = 2 = 0.
*

14. If a,b, ¢ are positive numbers, then

1 1 1 1 1 1

§t;+2b+§z—a+b_b+c_c+a2

24(1+1+1_1_1_1)_
da+b 3b+c 3c+a a+3b b+3c ¢4 3a
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Solution. We will prove that the following more general inequality holds
for any positive t-

e [‘1b t4c t2(0+b) t?(b-{-ﬂ) t?(c—r—a)

f(t)*ﬁ+§i+§z_ a+b B b+c¢ T eta

( t30+b t36+c t3c+a ta+3b tb+3c tc+3a )

3a+b+3b+c+3c+a_a+3b_b+3c_c-+—3a

Sintce f(0) = 0, it suffices to show that f/'(¢) >0 for t > 0. We have

lff(t) _ plaml o gdb=1 o=l _ p2a+b)=1 _ g2(b4e)-1 _ g2Aeka)-1_

2
~9 (t3a+b—1 + t3b+c—1 + t3c+a—l _ ta+3b—1 - tb+3c—l _ tc+30—1) )

Denoting =z = t“_al, y = %=1 and 2 = t° %, the inequality f'(t) > 0 reduces
to

which is just (10).

1
15. If z,y,z € [3,2], then

oo
N
S
w e
8w
N
v
o
TN
8|
@ | N
SRR
\——/
+
©

Solution. Let

E(m,y,z)=8(£+g+i)—5(2+£+£)—9.
y oz r Yy =z

T

Without loss of generality, assume that z = max{z,y,2} We will show that
Elz,y,z)2 E (a:, \/xz,z) >0

We have

T

Y 2

(y=vz2) (8z=52) L

TY2
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Let now ¢t = 1<t<2 Weget

E(:c, mzz (\/_+——3)-—5(\/7+_.,3)
=8(2t+i-—3)—5(%+t -3) =
=z (-1 (2t+1)—%(t—1)2(t+2)=

C (t—1)*(8+6t—5t%)  (t—1)%(4+5t)(2 1)
B t2 B t2

ﬁ

> 0.

This completes the proof. In the assumption z = max{z,y, z}, equality

occurs only for 2 =y = 2 and (z,y,2) = (2, 1, 5).

Remark. Using the same way, we can prove the following more general
statement-

1
Ifp>1and z,y,2z € [;,p], then

p(p+2)(§+%+-;—) (2p+1)( +y+ )+3(p2—1)-

*

16. Letp=+/4+ 32, and let z,y,z € { ] Prove that
2

Ozy +yz+22)(2? + y2 + 2Y) > (2 + y + 2)L.

Solution. Let A = 22 + y2 +2%2and B = zy + yz + zz. Since

zy +yz + z;v:)(:::2 + 32 +z2) —(z+y+2)0=
=9AB—(A+2B)* = (A - B)(4B — A)

and
AA-B)=(z-y)*+(y—2)"+(2—-2)? 20,
we have show that 4B - A > 0. This inequality is equivalent to
E(z,y,2) <0,

where
E(m:y)z) = -'132 + y2 + 22 - 4(my + yz + zz).
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1
We will show that the expression E(z,y, 2) is maximal for z,y,z € {;),p}.

Assume that this assertion is not true. Then, there exists a triple {z,y, 2}

1
with p < x < p such that

E(z,y,z) > max {E' (% ,y,z) ; E(p,y,z)} '

From
1 1
E(z,y,2) E(—,y,z):(m—l—)) (a:+——4y—4z)>0,

we get {

fy+z)—xr < —,

(¥ +2) $5
and from

E(z,y,2) — E(p,y,2) = (z -p)(z + p— 4y —42) 2 0,

we get

Aly+z)—z2p
1 .
These results imply p < pe which is false. Consequently, the expression

1 i
E(z,y,z) is maximal for z,y,2 € s } Since E(z,y,2) is a symmetric

11 1
~, = ) (—,p,p),E(p,p,p)}=
p'p’ P

-8 —

expression, we have

11 1
ez {5 (41 53
(z,y,2) ax 27
2 1 2
)

9 2
— g _ , -9 ‘8}_ _...__8__0_
max{ 5 D p > 2 P j/ 2

11
Equality occurs when = = y = 2, and also for (z,y,2) = (5, ;,p) or any

cyclic permutation

*

2
17. Let z,y,2 > 3 such that z + y + z = 3. Prove that

12y2 + yzz?‘ + 222? > xy +yz+ 2z
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Solution. Without loss of generality, assume that z > y > z. Let
E(z,y,2) = 22y + 2% + 222 — 2y —yz — 22

y+ 2 2 .

and t = 5 From z,y,z > 32 >y>zand 2+ y+ 2z =3, it follows
2

immediately that 3 <t < 1. We will prove that

E(z,y,2) > E(z,t,t) 2 0.
We have

E(z,y,2) — E(z,t,t) = 2(y® + 2% - 2¢%) — (¢ - y2)(t2 +yz—1) =

:%(y—z)2[$2+($2—y2)+(1—tz)] 20,

and
E(z,t,t) = 2222 + t* — 221 — ¢2,

Since = + 2t = 3, we get
9E(z,t,t) = 18272 + 9t — (22t + t¥)(z + 2t)? =
= t(5¢° — 122t* + 922t — 22%) =
=t(t —2)*(5¢t — 2z) = 3t(t — 2)*(3t — 2) > 0
and the proof is completed. Equality occurs for (z,y,2) = (1,1,1), and also

52 2 _
for (z,y,2) = ( —) or any cyclic permutation.

3’3’3
*
18. If z,y, 2z are real numbers, then
3zt +yt +2l—2Py—yP2—2%) > mz(y—z)2+y2(z—a:)2+zz(x—y)2.
Solution. The inequality can be rewritten as
3x3(x—y)+3y3(y—z)+3z3(z‘a:) > :cz(y—z)z-i—yQ(z—x)z+22(:z:—y)2.

Using the substitution y =z + pand z = z + ¢, the inequality becomes as
follows

7(p* — pg + ¢*)a? + (9p° — 11p°q — 2pq® + 9¢%)z+
+ 3p* — 3p°q — 2p%¢? 1+ 3¢* > 0.
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The left hand side is a quadratic of z For p = ¢ = 0, the inequality becomes
equality. Otherwise, we have p? — pq + ¢% > 0, and it remains to show that
the discriminant is non-positive. Indeed, we have

A = (9p° - 11p%q — 2pg® + 9¢°)*-
—28(p* — pg + ¢*)(3p" - 3p°q — 2p*¢* + 3¢*) =
= —3(p® + 10p%q + 9p*q® — T8p%¢® + T4p*qt — 16pg® + ¢°) =
= -3(p® + 5p%¢ — 8p¢* + ¢°)* < 0.

Remark 1. We can rewrite the inequality as a sum of squares, as follows:
Y (22 — P — 2% —xy +y2)? 20,
}:(3:1:2 — 3y’ —zy+ 2z —z22)t >0

Remark 2. Using the substitution 2 =2a - b, y =2b—cand 2 = 2c—aq,
the inequality transforms into

(a® + b2 +c2)2 > 3(a®b + bPc+ Pa),
which is just (1)
*
19. If z,vy,2 are non-negative real numbers, then
byt 2t —ayz(zy+2) > 2vV2(2Py 4P 2B —zyP g2t - z1?).
Solution. First write the inequality as

22(2? - y2) +y2 (1 — zz) + 22(2* —2y) 2
> 2vV2(z + y + 2)(z - y)(y - 2)(z — z)

Without loss of generality, assume that x = min{z,y, 2} Using the substi-
tutiony =z +pand 2=z + ¢q (p > 0,¢g > 0), the mequality becomes

5(p® — pg + g2 )z + (4p° — pPg—pg® +4¢¥)z +p' +¢* >
> 2v2pg(p— q)(3z +p+q)
or
5(p — pg + ¥z + [4p° — (6vV2+1) pPg + (6V2—1) pd® + 4¢°] 2+
+p' + ¢ +2V2p9(¢* - p*) 2 0
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2
Since p?—pq+42 > 0 and p* +q*+2v2pg(¢* —p?) = (P* - V2pq— &) 20,
it 1s enough to show that

4p® — (6v/2+ 1) p’q + (6v/2— 1) pg® + 4¢° 2 0.
Indeed, we have
4p° — (6V2+1) p’q + (6vV2— 1) pg* + 4¢° >
> 4p° - 10p°q + %pq2 +4¢° =p (20~ %)2 +4¢°20.
Equality occurs for (z,y, 2) ~ (1,1,1), and also for (z,y, 2) ~ (0, V2 +6,2)
or any cyclic permutation.

*

20. Ifz,y,z are non-negative numbers, then
2ty +2 172y 4727+ 2%20) > 6(a y+2)(Py+yP e+ 2P
Solution. Write the inequality as

>-24-%" y?2?) + 12 (Z y22t—zyz Y z)—6 (E 23y—a2yz Za:) > 0.

Since

S at-Y g2t = éz(mz_?ﬂ)z,
6 (E y? 2t —xy2 Z m) = Z(a:y‘2yz + zz)?,
3 (Z xsy—myzZm) = —3Zyz(m2—y2) =
= =8) w22’ —y") + Y (zy + yz + z2)(a?—1P) =
= Z(xQ—yQ)(:cy—Qyz + zz),

the inequality becomes as follows:

1
5 Z(:;r:2 —y? 4+ QZ(xy — Yz + 22)°—
- 22(:::2 —y?)(zy — 2yz + 22) > 0,

or
1
§§ ( 2—y2—2:cy+4yz—2zx)220.
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*

21. If z,y, z are non-negative numbers, then

S(a?—y2)? 2 VB Y ay(z - x)?
Solution. First write the inequality in the form
(=502 +2 (N astmay ) V6 (Do #) 20
Since
1
214_Zy2z2 _ §Z(x2—y2 2
6 (Y yP2l—zyz ) z) =Y (zy—2yz + 22)?,
(Zx y—zyz y T ) = —?:Zyz(a:2
= —SZyz 2l —y?) + 3 (zy + yz2 + 22)(2*—*) =
= Z Wzy—2y2z + 2z),

the inequality becomes as follows:

22::: — %) 3Z:cy Qz + zx)2—

— \/;Z(:r2 — y®)(zy — 2yz + zz) > 0,
or ,
—2-2 xc - y° — —3—(:t:y—2yz+za:) > 0.
* .
22. If x,y, 2 are non-negative numbers, then
4yttt 5(x3y + 332 4+ 22x) > 6(z?y? + y22? + 2227).

Solution. Without loss of generality. assume that z = max{z,y,z} Using
the substitution y = z +pand z = z+¢q (p 2 0, ¢ > 0), the inequality
becomes

9(p? — pq + ¢%)z® + 3(30° + p*q — 4pa® + 3¢°)z+
+p* +5p°¢ - 6p°¢* + ¢* > 0.
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This inequality is true, since
P’ —pa+4q* 20,

3p° + pq ~ 4pg® + 3¢° = 3p(p — q)* + q(7p? — Tpq + 34%) > 0,
P +5p%q-6p** +¢* = (p—q)* +pe(Bp - 29)2 2 0

Equality occurs for z = y = 2.
*

23. Let z,y, z be non-negative numbers, no two of them are zero. Prove that

?—yz yY—zz 22—y

T+y y+ =z z+zx

>0

First Solution. Since
22 —yz _z(z+2)
r+y z+y

]

we can write the inequality as

z(z + z) +y(y+m)+2(z+y)

>
z+y y+ 2z z24+z Zxtytz

Applying the Cauchy-Schwarz Inequality, we get

z(z + 2) +y(y+a:) +z(z+y) >
z+y y+ 2z z4zx

L [Ereta] (R4 T
S xzaty(=te) 3+ () (Cve)

Then, it is enough to show that

(X2 +3v2) 2 (o) () + (T ) (Twe).-

Since

(T + 3 52) = (07 +42(X ) (Dw2) + (T v2)’
and

(X2) (Tv2) = (X 22) (Tw2) +2(T ),
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the inequality becomes
2 2
(30 + (") (Xwa) 2 (=) (02°) + (Xov2)
This inequality reduces to
Z y2z2 > 1Yz Z:r,
which 1s true because
1
Zy222 —2yzy T = 52:1:2(31 —2)?

We have equality if and only ff z =y = =

Second Solution By expanding, the inequality becomes as follows

Y (@ —=z2) (2*+ D yz) 20,

Yoty = Fay’ + (T a?) () - (Lw2) 20,

Yy >ayz)
The last inequality follows immediately from the Cauchy-Schwarz Inequality

(S 2%) (L 2) 2wz (Ta)”
*
24. If z,y, z are real numbers, then
3zt + 't + =)+ 423y + P2+ 232) > 0

Solution. If z,y, z are non-negative numbers, then the inequality is trivial.
Since the inequality remains unchanged by replacing z,y, z with —z, -y, —=z,
respectively, it suffices to consider the case when only one of z,y, z is nega-
tive, let z < 0. Replacing now z with —z, the inequality becomes

3(x% + 1yt + 2%) + 423y > 4(y%2 + 2%2),
where 2 > 0, ¥y > 0, 2 > 0 It i1s enough to show that
3(z* + 3 +2%y) > 4(y°z + 2%x)

Cuse T <y Since 3z3y > 324, it suffices to show that

6% + 3y + 324 > 4(yPz + 22°)
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Using the AM-GM Inequality, we have
3yt + 2% > 4{/y122% = 4y

and

1 1 1 4 .’.34212 3 3
4 4 — 4 = 4 _ 4 I 4 > = —— > 2 .
3z + 2 3z +3;: +3z i-3z_4 5 \/§xz_ xz
Adding the first inequality to the second inequality multiplied by 2, the
desired inequality follows.

Case z > y Since 323y > 3y4, it suffices to show that

3z% + 6y* + 32% > 4(y%z + Px),
Since A 4
6y + % =2y + 2y + 2 + % > 43/y122% = 4y,

23
we still to show that 3z4 + —8-z4 > 4z23. We will prove that the following
sharper inequality holds

3z% + —g— 2t > 4x B

Indeed, we have

5 5 5 5 12524212
G2 ogpt 24024 0 a3
3z +2z 3z +62 +6z +62_4 = > dzz
Equality holds only for z = y = z = 0.
*

25. Let z,y, z be positive numbers such that z + y + z = 3. Prove that

x+y+z>3
1+y® " 1423 " 1443=9°

Solution. Using the AM-GM Inequality, we have

T zy® S xy3

3/2
3T%° 3=%~ =z -2,
1+y Tty 29372 5

and, similarly,

y23/2 z 2z3/2
2 ' 14237773

y
1+ 23

2y -




132 2. Starting from some special fourth degree inequalities

Thus, it suffices to show that
2y? 4y 4 222 < 3.

This inequality follows immediately from (30). Equality occurs if and only
fr=y=2=1

*

26. Let a,b,c,d be non-negative numbers such that a4 b+ c+d = 4. Prove
that
3(a? + b + ¢ + d?) + 4abed > 16

. . . b+c+d |
Solution (by Gabriel Dospinescu). Setting z = —5 yields < 3 and

a4+ 3z = 4 Without loss of generality, assume that ¢ = min{a,b,¢,d},
a <1 We will show that

E(a,b,c,d) > E(a,z,z,2) 2 0,

where
E(a,b,c,d) = 3(a? + b? + c* + d?) + dabed — 16.

Assume that a = min{a,b,c,d}, a < 1. We will show that
E(a,b,c,d) 2 E(a,z,2,2) = 0.
The left side inequality is equivalent to
3(3z% — §) > 2a(z® — bed),
where S = bc 4 ¢d + db By Schur’s Inequality
(b+ c+ d)® + 9bcd > 4(b + ¢ + d)(be + cd + db),

we find that 4
z® — bed < -3—(3:c2 —8)

Thus, it enough to show that
3(322 - §) > S“Tx(&c? - 9),

that is
(322 — S)(9 — 8az) > 0.
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The inequality is true since
6(322 = §) = (b= )2+ (c—d)2 + (d— a)? 2 0
and
3(9 — 8ax) = 27— 8a(4 —a) = 8(1 — a)? + 16(1 —a) + 3 > 0.
With regard to the inequality E(e,x,z,z) > 0, we have

3(a? + 32%) + daz® - 16 =

3(4— 3x)% 4+ 92% + 4(4 — 3z)2® — 16 =
= 4(8 - 18z + 9z% + 4z° - 3z%) =

4(1 - z)3(2 + z)(4 — 3z) > 0.

Ele,z,z,z) =

This completes the proof. Equality occurs for (a,b,c,d) = (1,1,1,1), and

4 4 4 , .
—-) or any cyclic permutation.

also for (a,b,¢,d) = (0, 3'3'3

*

27. Let a,b,c,d be positive real numbers such that e + b+ c+ d = 4. Prove

that
a b c d

> 2.
1+b2+1+c2+1+d2+1+a2"
Solution. Using the AM-GM Irequality, we have
a g ab? S, abz_a_ab
1452 1462~ 26 2’
and, similarly,
b be c cd d da
— e >b-— T _ > % 54 0
1+4+¢2 ™ 21142 =" 2’1+a2“d 2

Thus, it suffices to show that
ab+bc+cd+da<d
Indeed, we have

16 — 4(ab + bc + cd + da) = (a + b+ c+ d)? — 4(ab + b + cd + da) =
=(a=bt+c—d)?>0

Equality occurs if and only ifa = b=c=d = 1.
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*

28. Let a,b,c be non-negative numbers such that a + b+ c = 1. Prove that
2bc+3 2ca+3  20b+3 < 15

arl T hx1 Tegl S

Solution. Let 2 = ab+ bc+ ca. By the known inequality

(e + b+ c)? > 3(ab+ be+ ca),

1
we get = < 3 and by Schur’s Inequality

(a+b+c)® + 9abc > 4(a + b+ c)(ab + be + ca),

we get
1 4 9abc > 4

The required inequality is equivalent to
15(a+1)(b+1)(c+1) 22> (2bc+ 3)(b+1)(c+1)

Since
15(a + 1)(b + 1)(c + 1) = 15(abc + z + 2)

and
22(26c +3)(b+(c+1) = Z(4bc+ 6)(bc—a+2) =
=43 b%c? + 14z + 30 — 12abc = 42 + 14z + 30 — 20abe,
the inequality reduces to

z(1 — 4x) + 35abc > 0

1 1
For z < 7 the inequality is clearly true. Consider now " <z< 3 Since

dr — 1
9

abc > , we have

35(dz —1) (dz —1)(35—90
z(1 —~ 4z) + 35abc > z(1 — 4z) + (9; ):(9’ )s() $)>0

For a < b < ¢, equality in the original inequality occurs when

11
(a,b,c) = (0,0,1) and (a,b,c) = (0,5,5).
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*

29. If a,b,c are the side lengths of a triangle, then

a?(a +b)(b—¢) + b2(b 4 c)(c— a) + c*(c+ a)(a — b) > 0
First Solution We write the inequality as

a’b? 4022+ cta® —abe(a+b+c) > ab®+bcd +cad—a®b—bic—cla,
or
a?(b—c)® +b%(c—a)? +c*(a—b)? > 2(a+b+c)(a—=b)(b—c)(c—a)
Using now the substitutiona =y + 2z, b=z+4+ =z, c=z+y (z,y,2 > 0), we
have
a2(b—c)? 4+ b¥(c—a)? + Ha—b)? = (y2—22)% + (22—22)? 4 (22—22)% =
= 2z 4yt 4 24— xy?—y22? — 5222
and
2(a +b+c)(a—bd)(b=c)(c~a) = A(z+y+2)(y—z)(2~y)(a~2) =
= 4(x3y+y32+z3x—xy3—yz3—zx3).
Thus, the inequality reduces to
2yt 4l -yt 2 >
2 2(9:3y +yiz 4 28— 2y -yt - z:z:3),

which is just (10). Equality holds only for an equilateral triangle.
Second Solution. Write the inequality as follows

b%c? 4 c?a? + a%b? > ab(b? + ¢ — a?) + be(c? + o? - b))+

+ca(a® + b% — %),
bc ca ab

;4_ T + " > 2bcos A+ 2ccos B+ 2acosC.

] o ca ab be
Making the substitution = = Y=\ 2= the inequality
c a

transforms into the well-known inequality
2% +y? 4+ 22 > yzcos A + 22z cos B + 2zy cos C,
which is equivalent to

(z —ycosC — zcos B)? + (ysinC — zsin B)? > 0.
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*
30. If a,b, c are the side lengths of a non-equilateral triangle, then

a3b+b3c+c3a-a262—b2c2—cza2-> '{b+ b b }
a%b + b%c + c?a — 3abe 2 mingote=a,c+a=0,atb—c

Solution. By the AM-GM Inequality, we have

a’b + b2c + cfa— 3abe > 0
Let us assume now that ¢ = max{a,b,c¢} Then
min{b+c—a,c+a—-bat+b—-c}=a+b—c,
and the inequality follows from the identity

a3b+ b3c+ Ba — a?b? — b2 — cta? =

= (a2b + b%c + c*a — 3abc)(a + b —¢) + 2a(c — a)(b— ¢)?
On the assumption ¢ = max{e, b, ¢}, equality occurs for either¢ = aorc=1»%

*

31. Let a,b,c be the side lengths of a triangle. If x,y,z are real numbers
such that x +y + 2z = 0, then

yza(b + c—a) + zzb(c +a —b) + zycla +b—¢c) <O

. ) at+b+c .
Solution. Multiplying the incquality by — it becomes as follows:
24 .2 2 2442 2 2 p2__ 2
be ca ab

2yzcos A+ 2zxcos B 4 2zycosC + 2(xy + y= + 2x) <0,
22 4 y? + 22 — 2yzcos A~ 2zz cos B— 2zycosC > 0,
(z —ycosC — ::cosB)2 + (ysinC — zsmB)2 >0

The last inequality is obviously true. Equality occursif and only if 2 ty+z =
z Y z .
and = = ;thatisforr=y=2=0
sin4d sinB sinC v
Remark Forz — a—c, y = b—a and z = ¢—b, we get the known inequality

a?b? + b%c? + c?a? < a3b + b3c + Sa
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*

32, If a,b,c are the side lengths of a triangle, then
(2a% = be)(b — ¢)? + (262 — ca)(c — a)? + (2¢% ~ ab)(a—b)2 > 0

First Solution Using the substitution a =y + 2, b =z42,c =2+ y
(z,y,z > 0), the inequality becomes

2y xt 22y d 2> Y ya(y? + 20 +23 yfR
This inequality follows by summing Schur’s Inequality below multiplied by
2
Srttayz) z> }:yz(y2 + 2%)
to the obvious inequality
Z yz(y—2): > 0.

Equality occurs for an equilateral triangle.

Second Solution. Without loss of generality, assume that a > b > ¢. Since
2a2 — be > 0, it suffices to show that

(262 —- ca)(a — €)? + (2 —- ab)(a — b)? > 0.

Since (a—c)? > (a—-b)? and 2b% —ca > 262 — c(b +¢) = (b— ¢)(2b + c) >0,
it is enough to prove that

2b2—ca+2c2-ab2 0.
Indeed, we have

2b2+2c2—ab—ac=(b—c)2+(b+c)2-ab—ac=
=(b—-c)+(b+c)(b+c—a)>0.

*

33. Let z,y, z be non-negative real numbers. If 0 < r < m, where m ~ 1.558
is a root of the equation

(14+m *™ = 3m)™,
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then

Ty+yz+x < (x+y+z)”+1
3 - 3

Solution. Since the function f(t) = t7/™ is concave, by Jensen’s Inequality
we get

Ty+yztT = y(xm)-r/m + z(ym)r/m +x(zm)r/m <

yxm + zym _*_xzm)r/m
yt+tz2+zx

<(y+= f—m)(

Thus, it is enough to prove the inequality for »r = m  Without loss of
generality, assume that z = min{z,y,2} There are two cases to consider
r<z<yandzr<y<z

[. Casex < 2<y. If z=0, then z = 0, and the inequality is trivial.
Otherwise, for fixed y and 2 (y = 2 > 0), let us denote

m-+1
flz) = 3(%) — 2"y —ymz 2"z, z€|0,2.

We will show that
f(z) =2 min{£(0), f(2)} 2 0. (1)
Let us show that f(z) > min{f(0), f(z)}. We have

ff(a:)z (m+1) (%) _mmm—‘ly_zm,

f”(:c)_m+1(x+y+z)m—1_(m—1)y
m 3 3 zz—m

Since f”(z) is strictly increasing and lin}) f"(z) = —o0, two cases are possible:
Tr—

a) f'(z)<0,for0 <z <z
b) there exists z, € (0, z) such that f"(z;) =0, f"(z) < Ofor z € (0,z,)
and f(x) > 0 for = € (%1, 2], the point x| satisfies the relation

(m+ 1) (BEEEEN™ g - 1)ap 2y (2

Case (a). The function f(x) is concave on [0, z], and hence

f(z) > min{f(0), f(2)}
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Case (b) The derivative f'(z) is strictly decreasing on [0, 2] and strictly
increasing on [z1,2]. We have

£ =(m4 1) (LEE)" —om s [m 1) () - 1]

AN ™ m
By Bernoulli’s Inequality, (5) = (1 — §) >1-— 0 Then,

m(2 — m)

(m+1)(§)m—1>(m+1)(1-1;‘-)-1= ( >0

3 H
and hence, f'(0) > 0 There are two possible cases to consider f'(z) <0 or
f'(z) >0

Sub-case f'(z) < 0 There exists x2 € (0,z) such that f'(z;) = 0,
fi(z) > O for x € [0,z2) and f'(z) < O for z € (z2,2) The function
f(z) is strictly increasing on [0, 23] and strictly decreasing on [z, z]. Hence,
f(z) 2 min{f(0), f(2)}

Sub-case f'(z) >0 We claim that f/(z;) > 0. If our claim is true, then
f'(z) 2 f'(z1) > 0 for z € [0, 2], the function f(z) is strictly increasing on
0, 2] and f(x) > f(0) > min{f(0), f(2)} To show that f'(z1) > 0, taking

into account (2), we have

f’(xl): (m+1 (%_}__Z) umx’in_ly—zm:

)
):I:T_2y(:c1 +y tz)—mal' Ty —-z2" =

={m-—1 1

="~ 2[(m Dy(zy +y + 2z) — mzyy — 22~ mzm] =

= z["” [(m 1)y(y+z)—:cly—-:t:f mzm] >

>l [(m=y(y + 2) ~ 2y~ 2% = 27Xy + 2)[(m — 1)y — 2].

Thus, it suffices to show that (m — 1)y = z. To prove this, we will show that
(m—1)y < z implies f’(z) <0, which is a contradiction We have

2z\™
y—z ) —mz2m"ly — ™

£(2) = (m+1)
For fixed z, consider the function

-2z\™
y-|3 ) —mz™ly — 2™

hy) = (m+ 1)
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We must prove that A(y) < 0 for y € [z, ) Since h(z) = 0, it

m—1

suflfices to show that A'(y) < 0 on [z, ]
m —

] Indeed, since the derivative

m+1) (y+22)"“1 m-1
3

is strictly increasing, we have
+1 /2m—1\m"!
5k (G5) =[2G )
G2 m[ 3 \3m—3 H e
~ —0.0282mz""! <0.

Wiy) = ™

This completes the proof of the left inequality (1). To prove the right in-
equality (1), we will show that f(0) >0 and f(z) > 0 Since

B y+z)m+l_- mo m(y+z)m+1_m
0= 3 (L) g (S22,
the inequality f(0) > 0 is equivalent to

m +1
() =< (5)
) “\m+1
This inequality follows from either the weighted AM-GM Inequality or Jensen’s
Inequality bellow applied to the concave function f(z) = Inz.

y+z)
m+1/

mf (L) +1(2) < (m+ 1)1 (

Since

m+41
flz)=3 (y-}:o)Qz) —ymz—yz™ 2"

the required inequality f(z) > O can be rewritten as g(t) > g(1), where

-—-gzland

We have

gt = (m+1)(22)" —umt -1,

m—1 m .
J(t) = m(m3+ 1) (t-;Q) B (,;n_ml)
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Since the function ¢”(t) is increasing, we get

gty = ¢"(1) = m >0

Then, the derivative ¢'(t) is strictly increasing on [1,00), and hence
g'(t) > ¢'(1) = 0. Consequently, the function g(t) is also strictly increasing
on [1,00}, and therefore g(t) > g(1).

Il. Case z < y < 2. Let F(z,y,2) = 2™y + y™z + 2™z. We will show

that
z+y+ z)m“

3

Since the right inequality is true (as shown in the preceding case), it is
enough to prove the left inequality F(z,y,z) < F(z,z2,y). For z = y, the
inequality becomes equality, while z < y < z it is equivalent to

=)~ f) _ )~ 1(2)
r—Yy - y—2z

f(x) f(y) fz) S,

(z—v)z—2) (y—2)y—z) (—2z)(z2—y) " "
where f(t) = t™. These inequality are true because the function f is convex.
The original inequality becomes equality for (z,y,z) ~ (1,1,1). More-

F(z,y,2) < F(z,2,y) < 3 (

or

over, In the special case r = m, equality occurs again for (z,y, 2) ~ (0,m, 1)
or any cyclic permutation.
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Chapter 3

Inequalities with right
convex and left concave
functions

Let f be a function defined on an interval I C R. The function f 1s said
to be right convex on f if there is s € I such that f is convex for z > s.
Similarly, f is said to be left concave on I if there is s € I such that f is
concave for z < s [7] The following two theorems and their corollaries are
useful to prove a large class of Jensen’s type inequalities for right convex and
left concave functions.

3.1 Inequalities with right convex functions

Right Convex Function Theorem (RCF-Theorem) Let f(u) be a func-
tion defined on an intervall C R and conver foru>s, s e€l. If

x1+m2+---+xn)
n

f@1) + () + o+ flzn) 2 nf (1)

fJorall z1,22, ,z,€l such that

T+ T2t g

- =s and x9 = x3 = = Iy, > S,
x .
then (1) holds for all x),xq,...,z, € I such that Sukchs +$n23.
n

143
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Proof. Without loss of generality, assume that £; < 20 < - < z,. Uf
z, > s, then the desired inequality is just Jensen’s Inequality for convex
functions. Assume now that £; < s Since x; + 22 + -+ + z, > ns, there
exists k € {1,2, ,n— 1} such that

2 K-S <8< Ty S0 - S Ty

Setting

Tyt Za+ -+ 2y T+ Tk Tky1 + -+ Tn
S: ,z—_—.-————k—,t:
. n

we havez €I, t €I, kz + (n — k)t =nS and
r<s<S<t
By Jensen’s Inequality, we get
flzrsr) +- 4 flzn) 2 (n— k) f(2)
Then, we still have to show that
fle1) + -+ f(zr) + (n— k) (t) 2 nf(S)

ns —&; .
Denote now y; = —7 fori =1,2,... k. Let usshow that s < y; <t

The left side inequalit_y reduces to x; < s, which is true for ¢ = 1,2,. k.
In addition, we have

ns—x1<n5—x1 To+ - -+ Tn | Tpp1 ot I

. = = < :t.
vi sy n—-1 ~ n-—-1 n—1 = n—k

Thus, according to the hypothesis, the inequality holds
flz:) + (n = 1)f(wi) 2 nf(s)
Summing all these inequalities for i = 1,2, .,k, we get
fl@)+ -+ flae) 2 knf(s) = (n = D) {f () +- -+ fye)l,
and we still have to show that

knf(s) + (n—k)f(8) 2 nf(S) + (n— D) [f(m)+ -+ Fue)l-
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(n+k—1)s—kz
n—1
ns+(k—1)8§—kz (k—1)s+(n—k)t

s< s < = < L.
b= n—1 n—1 -

Let s} = . We have

We will apply now the Karamata Majorization Inequality, which states the

following.
o If f is a convez function on 1, and a vector A = (a1,a2, .,ar) with
a; € I magorizes a vector B = (b1, ba,. ,bg) withb; €1, then

flay) + fla2) + -+ flar) = f(br) + f(b2) + - + F(bx).

We say that A= (a1,a2,. ,an) with ¢y > ag > --- > a, majorizes
B =(b,ba, ,b;) withb; >b2> --> by, and writeit as A > B, if
ay 2 bl)
ap +ag > by + by

ayt+ax+- e 2b+bot - bpy,
aytay+---+a,=by+by+- +b,.

In our case, the vector A= (s1,5,.. ,8) majorizes the vector B= (Y Ybt, Y1),
since (k—1)s+s; =y1+ Hyrands <y <y <- < y; Consequently,
by Karamata’s Majorization Inequality we have

fly)) + -+ flue) < (B =1)f(s) + f(s1)-
Therefore, it suffices to show that
(Rt k—~1)f(s) + (n—k)f(t) 2 nf(S) + (n—1)f(s1).

This inequality can be obtained by summing the following Jensen’s
inequalities multiplied by n and n — 1 respectively.

t—S 5-—

o+ t_:f(t)?_f(s),
t — —

i)+ 22 1) > f(s).
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Remark 1. The theorem hypothesis is equivalent to the condition:

f(z)+(n—1)f(y) = nf(s)
for all z,y €l such that x < s <y and z+ (n — 1)y = ns.

f(t) - f(s)

Remark 2. Let g(t) = ;
-5

we get

Forr<s<yandxz+ (n— 1)y = ns,

flx)+ (n = Df(y) = nf(s) = flz) — f(s) + (n = D) [f(y) - f(s)} =
= (2 —s)g(z) + (n — 1)(y — s)g(v) = (s —z)lg(y) — 9(=)].

Thus, the theorem hypothesis is equivalent to the condition
9(z) < gly) forallz,y €l such thatz <s<yandz + (n—1)y =ns.

Remark 3. Assume that f is differentiable on I Then, the RCF-Theorem
holds valid by replacing the theorem hypothesis with the more restrictive

condition
f'(z) < f'(y) for allz,y € such thatz < s <y and z + (n—1)y = ns.

To prove this claim, let us denote

ns—=x

F(z) = f(z) + (n = Df (27 ) —nf(s)

n—1
Since

Fi(z) = f'(z) - f'(y) 0,
the function F(z) is decreasing for < s Therefore, F((z) > F(s) = 0 for
z < s, and hence f(z)+ (n—1)f(y) —nf(s)>0.

Right Convex Function Corollary (RCF-Corollary) Let f be a function
defined on (0,00), and let r > 0. If the function fi{u) = f(e") is convez for
u>Inr, and

flar) + flag) + - -+ f(an) 2 nf (Yarez  an) (2)

for all ay,as,. .,an >0 such that

Yaiay...an, =7 and ax = az = =ap >,
then (2) holds for all ay,az, ,an > 0 such that Yajay ..an 2.
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Proof. Apply RCF-Theorem to the function f(e"). Moreover, replace s by
Inr, and z; by In a; for all indices 3. a

Remark 4. The corollary hypothesis is equivalent to the condition:

f(@) + (n—1)f(y) 2 nf(r)

forallz,y >0 such thatx <r <y and 2y™ ! = r".

Remark 5. Assume that f is differentiable on I The RCF-Corollary holds
valid by replacing the theorem hypothesis with a more restrictive condition
ef'(x) <yf'y) forallz,y €1 such thatx <r <y and zy™ ! = r".

To prove this, let us denote

Flx)= f(z) +(n—1)f (r "‘\'/g) —nf(r).

e f(@) =5
F — _ : n—1 1 ’ _ Zi\x)—Yyj\y
() = '(2) = =4/ 1') R
the function f(z) is decreasing for # < r Therefore, F(z) > F(r) = 0 for

z <1, and hence f(z)+ (n — 1)f(y) —nf(r) >0

3.2 Inequalities with left concave functions

Left Concave Function Theorem (LCF-Theorem). Let f(u) be a
Junction defined on an intervall C R and concave foru <s, se . If

w1+m2+---+xn)
n

fl@) + f@s) + -+ flzn) <nf ( (3)

forall zy,25, ..,z €1 such that

$1+$2+-- +frn

- =sand ry=29= - =z, 1 <5,
then (3) holds for all 2|, 23, ...z, € I such that L <s.
n
Proof. To prove this theorem we proceed as in RCF-Theorem proof. a

Remark 6. The theorem hypothesis is equivalent to the condition.

(n=1)f(z) + f(y) < nf(s)

for all z,y € I such that z < s < y and (n— 1Dz +y=ns.
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f(t) — f(s)

Remark 7. Let g(t) = /
-s

to the condition

a(z) > gly) for aliz,y €1 such thatz < s <y and (n — 1)z + y = ns.

Remark 8. If f is differentiable on I, then the LCF-Theorem holds valid
by replacing the theorem hypothesis with a more restrictive condition
() > f'(y) forallz,y €l such thatz < s <y and (n— 1)z 4+ y = ns

The theorem hypothesis is equivalent

Left Concave Function Corollary (LCF-Corollary). Let f be «
continuous function on (0,00), and let r > 0. If the function fi(v) = f(e")
is concave for u < Inr, and

fler) + flaa) + - + f(an) Snf(Jara2 an) (4)

for all ay,as, ..,an > 0 such that

Yaa; . ap=r1 and a1 =ag =+ =an-1 <1,
then (4) holds for all ay,ay, ,an, >0 such that Yajez  an < 7.

Remark 9. The corollary hypothesis is equivalent to the condition:
(n — D)f(z) + f(y) < ng(r) for all z,y > 0 such that z < r < y and
x"‘ly = pN

Remark 10. If f is differentiable on T, then the LCF-Corollary holds valid
by replacing the theorem hypothesis with a more restrictive condition
zf'(z) > yf'(y) for all z,y €1 such thatz < r <y and z" 'y =r"

3.3 Inequalities with left concave-right convex
functions

Left Concave - Right Convex Function Theorem (LCRCF - Theorem).
Let a < ¢ be real numbers, and let f be a continuous function on 1 = |a,00),
concave on |a, ] and convez on [c,00). If 1,22, ,&n €1 such that

xy +T9+ -+ 2z, = 8§ = constant,
then the expression
E = f(z1)+ f(z2) +  + flzn)

is mazimeal forxy =xp =+ =Tp-1 < In.
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Proof Without loss of generality, assume that 2, < 29 < - - < z,. If
zp, <c, then by Jensen’s Inequality for concave function we have

fla)+ f(@) + o+ fle) < np (BT T )

n
Therefore, the expression E is maximal for 1 = 29 = =z, Ifz,; >c
there exists k € {0,1, ,n — 1} such that

asrn< Sy <ce<ry < Lzxq

By Karamata’s Majorization Inequality for convex fuiction and Jensen’s
Inequality for concave function, we have

f@esn) ¥ 4 f(z0) S(n—k=1)f(Q)+ (Tpsr+ - +an— (n—k—1)c)
and
(n=k=D)()+f(@)+ - -+ (n-1)f (A
respectively Summing up these inequalities yields

flx)+ flz2)+ -4 f(za) < (n—=1)f(z) + f(y),

etz +~’Ek)
n—1 ’

where
—k—1 .
= (n )::1+—$11 l s y Y= ZTpy1 + -+mn—(n—k—1)c
It easy to check that (n—1)z+y=2;+23+-- 4z, and z < y. According
to the last inequality, the expression E is maximal for z; = - - = Tno1 =2
and z, = y £

Remark 11. Theorem 1 1s also valid in the case I = (a,c0) and hm 1 f(z) =
—oo  In addition, Theorem 1 is still valid if a < ¢ < b, § < (n — 1)c + b
and f is a continuous function on I = [a,b), concave on [a,c| and convex on
[¢.b)

In a similar manner we can prove that the following statement
Single Inflexion Point Theorem (SIP - Theorem). Let f be a twice

differentiable function on R with a single inflexion point, let S be a fixed real
number and let

o) = 1)+ (n-1)f (2=3).

Ifxy, 29, | zn are real numbers such that xy+xe+ - +x, =38, then

inf g(z) < fz1) + f(z2) + -+ f(zn) < supg(z).
T z€R
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3.4 Applications

1. If I1,2a,-.

then

, Tn, are non-negative real numbers such that

$1+$2+"'+$n:n;

.(n—l) (m?+x§+---+mi)+n22(2n—1)(xf+x%+ +a:,21)

2. If ¢y, 2o, .

then

(Vasile Cirtoaje, GM-A, 2, 2002)
,Tn are non-negative real numbers such that

ry+ ot +Tp =1,

dtad+ o taden?<(n+l) (et i+ +2d)

( Vasile Cirtoaje, MS, 2004)

3. If ;,22,. ,2x, are non-negative numbers such that
Zyt+x2+---+2n —r> n—1,
n n
th
en 1 1,1 m
1+2f " 143 1+x2 = 1472
(Vasile Cirtoaje, GM-A, 2, 2005)
4, If z1,z9, ,x, are non-negative real numbers such that
Ty t+xet -+ p n—1
=r <4 ——-,
n “Vni-n+1
then ] N { ey 1 . n
1+2f 1423 1+22 = 14712
(Vasile Cirtoaje, GM-A, 2, 2005)
5. Ifz1,z9,...,2, are positive real numbers such that z;+z2+- +2, =1,
then
1 1 2 2, .2 2
—_—t -+ +—2>2(n-2) +4n(n—1)(x1+x2+---+a:n).
I o) In

(Vasile Cirtoaje, MS, 2004)
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6. If z1,x9,..., 2, are non-negative real numbers such that
T+ Zy+ 0+ T, n—1
=r< 71
n (n +vn — 1)
then

1 1 1 n
<
1*\/x_1+1—\/ﬁ+ +1—,/:rn_1—\/F

7. Let 0 < z,79,...,z, < 1 such that

ntzet AT n—1
=r> 5
n (\/ﬁ-i- \/n—l)
Then ! ) s 1 , m
Yl gy 1= Vo = 1=
8. If £1, 29, ..,z are positive real numbers such that
x1+x2+---+xn:r51+2\/n_—1,
n n
then 1 1 1 [\
(m1+—) (m2+—)...(xn+—)2(r+—) .
I I In r
9. If 21,29, ..,zn (n > 3) are positive real numbers such that
Ty + T+ +2q =1,
then

() () () > ()

10. If x,y, z are non-negative real numbers, no two of them are zero, then

48x 48y 482
14+ I+ —= 1+ —— >15.
\/ y+z+\/+z+x+ +x+y—

(Vasile Cirtoaje, CM, 6, 2005)
11. Let z,y,2 be non-negative real numbers, no two of them are zero. If

n3
r > rg, where ry = o 1 = 0 585, then

( 2x )"+( 2y )"_*_( 2z ’>3
y+z z24x :r+y) -

(Vasile Cirtoaje, CM, 6, 2005)
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12, Let z,y, z be non-negative real numbers such that z +y+ 2 = 3. If
In2

In3—1In2
z'(y+2)+y (2 +z)+2"(z +y) <6

0<r<rg, whererg = =~ 171, then

13. If 1,29, .,z, <1 are non-negative real numbers such that

T1+x9+ -+ Ty 1
=r>—-,
n -3

then JF

T T VT n\r

Lo M2y o S Y

1—x1 1—.’E2 1—-—.’L‘n 1—r

(Vasile Cirtoaje, CM, 7, 2004)
14. If a,b, c are non-negative real numbers such that a + b+ ¢ = 3, then
(1—a+a)(1=b+b)(1—c+c*)>1
15. If 1, x9,. .,ZTn are non-negative numbers such that z;4+z2+- - -+z, = n,

th
en 1 1 1

o ———5 < 1.
n—:n1+:rf n——m2+:r§

n—Tp + T2
( Vasile Cirtoaje, MS, 2005)

16. If a, b, ¢ are positive real numbers such that abc =— 1, then

1 1 1
1+a+b+622\/1+—+—+—
a b ¢

17. If a,b, ¢, d are positive real numbers such that abed = 1, then

(a—1)(a—2) + (b—1)(b—2) + (c—1)(c—2) + (d—1)(d—2) > 0

18. If a1, a3, . ,an (n>4) are positive real numbers such that ajas ap=1,
then

(n—1) (a2 +ad+ - +a2)+n(n+3) > (2n+2)(a;+az+ - +ap)
(Vasile Cirtoaje, MS, 2005)

19. Ifa;,a;, ,a, are positive real numbers such that ajas .a, =1, then

1 1 1
at ! al 4 c+a" l4n(n—2) > (n—1) (—-{——-}— : +-—)
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20. Let ay,a9, ,a, be positive real numbers such that ajas ..a, =1. If
m > n, then

1 1 1
al' + a3 + -+anm+mn2(m+1)(—+—+---+—).
a; G an
( Vasile Cirtoaje, MS, 2006)

21. If a1,a2, ,a, (n 2> 3) are positive real numbers such that

Yajay. .. a, =p>Vn—1,

then

1 1 1 n
+ + -+ >
(1+a1)? " (1+ag)? (1+aa)? = (1+p)?
22, If a3, a9, ..., a, are positive real numbers such that
Yaias. . =p> n? — 1,
then
1 + 1 + ' 1 S n
Vi+ar  V1+as Vita, ~ V/T+p
23. If ay,a9,.. ,ay, are positive real numbers such that
YVaiag...ap =p < nnl—l,
then
1 + 1 + 1 < n
(14+a1)? " (1 +ay)? (1+ap)? =~ (1 +p)?
24. If a1, ay,.. ,a, (n > 3) are positive real numbers such that
2n —1
Yaja —
142 . p = (n — 1)2 )
then
1 1 1 n

+ +-- -+ < .
Vi+ar 1+ ay Vit+e, ~ JI+p
25. If a1, a9, ..,a, are positive real numbers such that Yajay . an =
1, then
1 1 1

— + +- -+ >
1+a1+v--+a’f 1 1+a2+..‘+ag_l 1+an—|—---+a2_1 N
n

P
1 + p + PR + pn—l
(Vasile Cirtoaje, GM-A, 2, 2005)
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26. If ay, a9, ... ,ap are positive real numbers such that ajas ..a, > 1, then
1
atag+- +ay— Yaray a2 E (lnai~—lrlaj)2
2n "y
1<i<i<n

(Marian Tetiva)

27. If a1,ay,.. ,an are positive real numbers such that aja; ..a, =1, then
1% 1y 2 1y%
(1-2) +(1-2) + +(1-2) " <n-1
n n n
( Vasile Cirtoaje, GM-A, 3, 2004)
28. If z1,z5, ..,z, are non-negative real numbers such that

T+ T+ T =1,

then
R p T TR > ]
(Pham Kim Hung, MS, 2006)
29. Let z{,75, ,z, be non-negative real numbers such that
ry+xra+ -+ =1
Prove that

2(x?+x%+---+xi)+n25(2n+1)(1:%+3:§+- +m,21)
30. Let z,y, z be positive real numbers such that z +y -+ z =3 Prove that
1 1 1 9 9 . .o
8=+ —+=)+92>10(z* + y* + ).
T Yy z

(Vasile Cirtoaje, MS, 2006)

3.5 Solutions

1. If xy,xq,.. T, are non-negative real numbers such that
1 +xI0+ - +xIy=mn,

then

(n—l)(:n?+:tg+---+:ri)+n22(2n—1)(x%+x%+-- +x?1).
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Proof. We may write the inequality in the form

3

Ty +z9+ '+l‘n)
n

)+ flE)+ o+ flam) > nf
where f(u) = (n — 1)u® — (2n — 1)u?, v > 0. The second derivative

f"(w)=6(n—-1u-2(2n-1)

2n—1
shows that f is convex for u > 3(_n—_1)’ and hence for u > s, where
9 —
g1t Tt-dz, o 2n-l
n —3(n—-1)

By RCF-Theorem, it is sufficient to prove the inequality for
11<1<r9g=23="-=1x,.

According to Remark 2, we have to show that g(z) < g(y) for0<z <1<y
and z + (n — 1)y = n, where

F(e) - f(1)

9(t) = ——

=(n-DE+t+1)-2n -1t +1)
Indeed, we have

9(z)~9(y) = (z-)[(n~1)(z+y+1)=2n+1] = (n—2)z(z—y) < 0

For n = 2, our inequality becomes equality. For n > 3, equality occurs

when either 1 = z9 = .- =z, =1, or one of z; is equal to 0 and the other
ones are equal to O
n—1
*
2, If x1,z9,...,2, are non-negative real numbers such that

T1tr2+ -tz =m,

then
x?+:1:g+---+a:§,+n2g(n+1)(xf+x%+---+:rﬁ).



156 3 Inequalities with right convex and left concave {unctions

Proof We inay write the inequality in the form

f(.7:1)+f(:n2)+...+f(xn)Snf($1+$2+-- +mn)’

n
where f(u) = 43 —~ (n + 1)u?, v > 0. This function is concave for
n
0<u< , and hence for 0 < u < s, where
s:x1+x2+- +zn:1Sn+1
n 3

By LCF-Theorem it is suffices to prove the inequality for
Ty =Tp= +=1Tp 1 <1<z
Taking into account Remark 7, we have to show that g(z) > g(y), for
0<z<l<yand (n—1z+y=mn

We have

g(t):-f(—t)t——}{;(—ll:tzwnt—n

and
9(z) —g(¥)=(z-y)(z+y—n)=(n—-2)z(y—z) 20

For n = 2, the original inequality becomes equality For n > 3, equality

occurs when either z; = r9 = - - =z, = 1, or one of z; is equal to n and
the other ones are equal to 0. O
*
3. If x1,xy, ..,Tn are non-negative numbers such that
: -1
s e s o N Ll
n n
h
then S SRS B
1+2%  14+x% 1+22 = 14727

1
Proof. Apply RCF-Theorem to the function f(u) = SEwE u > 0. From

. 2(3u? — 1
e = e
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1 n—1 1
it follows that [ is convex on [-—\/—é,oo) Since s = — > -—\/—3_-, the

function f is convex on [s,c0) By RCF-Theorem and Remark 2, we have
to show that g(z) < g(y) for 0< z < s <y and z + (n — 1)y = ns, where

J(t)—f(s) _ —t—s
)= T AT

Since
(z —y)[s(z +y) + 2y — 1]

(L+s5)(1+22)(1+97)
we still have to show that s(z + y) + zy — 1 > 0 Indeed,

9(x) —g(y) =

ns?—n+1+z[2(n—1)s—z] S ns’-n+1 0
n+1 = a+l 7

s(z+y)+zy—1=

. n—1
Equality occurs for 2; = 29 = =1z, = r. In the case r = ,

equality occurs again when one of z; is equal to 0 and the others equal
n

. O
n—1
*
4, If xy,x9,.. ,x, are non-negative real numbers such that
T +x9+ - +z4 n—1
= 7r < S,
n = Vnrin+i
then
1 N 1 L.y 1 <N
1+22 " 1 +x3 1+x2 = 1+7r2
1
Proof. Apply LCF-Theorem to the function f(u) = ——, v >0 Since

1 4+u?’

) 1 n-—1 1
J 1s concave on [O, ﬁ] and s = \/m < -—\/—3_-, it follows that f is

concave on [0,s]. According to LCF-Theorem and Remark 7, we have to
show that g(z) > g(y) for 0 < 2 < s < y and (n— 1)z 4+ y = ns, where
J(t) = f(s) —t—s

= s TTr e
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Since

(z-y)ls(z+y)+azy—1] _

(1+s2)(1 +22)(1+y?)

(x—p) [ns? — 14 25z — (n— 1)27)
(14 s2)(1+22)(1 + y?) ’

g(x) — 9(y) =

we have to show that ns2 — 1+ 2sz — (n — 1)z2 <0 Indeed,

(n2—n+1)s2—n+1 - [(n-1)z—s]? _
n—1 B

=l(n—Dz s

n—1

n—1
Equality occurs for ; =29 = - =1z, =7 Inthecascr = \[ ——,
nt—n-+1

equality occurs again when one of z; 1s equal to (n— 1)r, and the other ones

ns? — 142z —(n—1)z? =

<0

are equal to a
n—1
*
5. If 1,29, ,Tn are posilive real numbers such that x\ +x3+- -+2n = 1,
then
i+l+---+i>(1').—2)2-|-4'n,('n,——1)(.'I:Q-IF:EQ—I— +x2)
1 T3 T, = 1 2 n

Proof We may write the inequality in the form

3

Ty + 2Ty +- +1‘n)
n

Jle)+ f(z) + -+ f(za) <nf (

1

1
where f(u) = 4n(n — 1)u? — o> 0. We see that the function f(u) is
concave for 0 < u S Y m Since s =

f 1

3 .

< -

an( 1), the function
f(u) is concave on (0, s|

According to LCF-Theorem and Remark 7, it is enough to show that

S|

1
g(z) > g(y) for 0<z< —<y and (n— 1z +y=1.



3 5 Solutions 159

Indeed, we have

— 1 n
ot) = M =dn(n—1)(t+5)+ — = 4(n = )(nt +1) + =
-5
and
1 n(y—z)(2nz—2z—1)2
_ = - —4—— ) = >0
9(z)—9(y) = n(z-y) (472 4 xy) poy >
1
This completes the proof. Equality occurs for £y = 9 = -+ = 2, = —, a8
well as when one of z; is equal to 5 and the others are equal to oG
*
6. If 21,29, ,z, are non-negative real numbers such that
T +x9+ -+, n—1
=r< 29"
n (n +vn— 1)
then 1, L L. n
Y TV V=l P
Proof. § < VD) e ! for all
i 4 e ;<1 for all <.
roof. Since /z1+x9+ -+, < Y < 1, we hav a
1
We will apply LCF-Theorem to the function flu) = T—va 0<u<l.
3vVu—1 1
From f"(u) = v 3, it follows that f is concave on [O, —], and
duy/u (1 - /u) 9
n—1
hence on [0, s|, where s = 5 By LCF-Theorem, it suffices to
(n +vn— 1)

consider the case z; = z9 - =xp-1 < s < 2,. Taking into account
Remark 7, we have to show that g(x) > g(y), for 0 < z < 5 < y and
(n— 1)z +y = ns. Since
t)—-f(s 1
o) = LO=1Gs)

=5 1A (1- V) (Ve VA)

and

y9(z) = g(y) = (Vo= vE) (1-v5-va- o)
(1=v5) (1-v/2) (Vs+ V) (1= 5 (V+ya)’



160 3 Inequalities with right convex and left concave functions

we still have to show that 1 — /s > /z + /7 By the Cauchy-Schwarz
Inequality, we have

(5 +1) (=D +2) > (vVE+ ),

nn---
nVnil 2 V2+Vu

or, equivalently

Therefore,

i 2~ (14 ) o

n e
n—1
Equality occurs forzy = 29 = - =z, =r Inthecaser = 3,
(n +vn—1

equality occurs again when one of z; is equal to (n—1)r, and the other ones
are equal to (]

n—1

*
7. Let 0< z1,19, .,xz, <1 such that
r+22+ - + 2y n—1
=r> 7 -
" (Va+vaT)
Then
1 N 1 I 1 > n
- Vo | 1= @ I o~ 1= F
1
Proof We will apply RCF-Theorem to the function f(u)= Py 0<uxl
3Ju—1 1
From f"(u) = Ve 5, it follows that f is convex on [—, 1), and
fu/a(1— ) 9

n—1

(Va+va=1)’

By RCF-Theorem, it suffices to consider the case

hence on [s,1), where s =

T1 £ s<xg ="' =ZTp-1 = ITn.
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Taking into account Remark 2, we have to show that g(z) < g(y), for
0<z<s<y<landz+ (n-~1)y=mns Since
f(t)—-1(s) 1

T T A V) (A

and

(vi-v3) (1-v5-vE- o)
(1~v5) (1~ vz) (vV5+vz) (1-3) (Vs +3)

we still have to show that 1 ~ /s < \/z + ,/y Indeed, we have

VEHIHE =12 [y Vi-1= [ s 1 =0

9(z)—g(y) =

n—1
Equality occursforzy =29 = - =1z, =r. Inthecaser = 3
(\/ﬁ +vn— 1)
equality occurs again when one of z; is 0, and the other ones are equal to
nr
O
n—1
*
8. If zy,zy,. .,z are positive real numbers such that
Zy+xo 4+ zq r<id 2\/71,—1,
n n
then

e ) e d) ()2 ()

i

1
Proof. Apply LCF-Theorem to the function f(u) = =1In (u + -—), v > 0.
u

The first two derivatives of f are given by

ooy L—~u? wey _ ut—du?~1
f(u) - 'U.('U.2+1) and f (l‘) - '11.2('11,2+1)2

Irom the second derivative, it follows that f is concave for 0 < u < V2445

) 2yn -1
Since s = 1 + —— <2< y/2+ V5, f(u) is concave for 0 < u < 5. By
LCF-Theorem and Remark 8, it suffices to show thal f'(z) = f'ly for
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O0<z2<s<yand (n—1)z+y=ns
Since

Z.¢ T -
F'(@)~ (y) = (y—z) HEEY 2y aty) —ay

> —_
(2149 = O T et (1)
it is enough to show that z + y > 2y Indeed, we have

zty—zy=x+(l—z) [n+2\/n—1-—(n——1)x] = (\/n-I:c—l—\/n—l )2 >0

Equality occurs only for zy = 20 =+ =z, =T. [}

*
9. Ifzy,22, ,zn (n 2> 3) are positwe real numbers such that
ri+za+ -4 =1,

then
() ) (e () o

Proof. We will apply LCF-Theorem to the function f(u) = — In (
O<u<1l We have

2
32

11, ul4u-l
—u '3 f(u)*.?uz(l—u)z‘

T x4 2n
Since f is concave on (0,\/5-—1] and s = : 2 = =ﬁ<\/§_1
(for n > 3), f is also concave on [0,s] By LCF-Theorem, it is enough to

show that (n—1)f(z)+f(y) < nf(%) for0 < z < ;11—5 yand (n—1)z+y = 1.

Write this inequality as
nZ(l—~z)" 1> (n- 1)”_1x25_3y% :
By squaring,. it becomes
(2 -22)% > (2n ~ 2)2"_2% z" 3y
Since 1
2-—‘2:1:=n;+ (n—3)z+uv,
this inequality follows from the AM-GM Inequality. Equality in the original

J

1
mequality occurs for zy =z = - =2, = -
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Remark 1. According to Remark 8, inequality (5) holds if f'(z) > f'(y)

1
for0<z< ~<yand (n—1)z+y=1 Indeed, we have
n

, , 1, 1 1 (y-z)(-z-y-zy)
J @) =T = e ¥ 1 "5y Ty = Zey(i=2)(i—0)
z{y—z)(n—-2—~1y) > zy—z)(l-y) _
20y(1 ~2)(1—y) ~ 2zy(l —z)(1 —v)
_ (n=1)2*(y—x)
— 2zy(l = z)(1 ~3) 2 0.

Remark 2. Inequality (5) can be written as
z 1 n J 1 \"
-1 1+ /x;) > ( - ——)

On the other hand, by the AM-GM Inequality and Jensen’s Inequality, we
have

n

ﬁ(1+ﬁ)s(1+%§\/ﬁ) s(1+ %gx :(1+_1ﬁ)”.

=1

Thus, the following result follows:
o Ifzy,Z3,. ,x, (n>3) are positive numbers such that

$1+-’I32+"'+$n:11

(o) () 2y

Remark 3. By squaring, inequality (5) becomes

then

n

[z e-2)2 (on-2) ©

i=1

1+ 2z

Since the function f(z) = ln1
~z

1s convex for 0 < z < 1, by Jensen’s
Inequality we get

1 )y +x2+. .xq
11‘[1+a:, t - _(n+1)"
i=1 "ml“ { Ty +2Z2+ ...z, n—1/ "~
n
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Multiplying this inequality and (6), we obtain the inequality of Kee- Wai Lau
(Crux Mathematicorum, 2000):
o Ifxy,29,. ,xz, (n>3) are positive numbers such that

Ty+z2+  +zp=1,

(Grm=) (=) (o) 2 (n=2)

*

then

10. If 2y, = are non-negative real numbers, no two of them are zero. then ~

i \/+_+\/1+_4?+;>15

Proof. Since the mequallty is homogeneous, we may assume that zt+y+z2=1.

Under this supposition, the inequality becomes

/1 7 /
+4z+ 1+47y+ 1+47z215
l—=z 1-y 1—-=z

To prove this inequality, we will apply RCF-Theorem to the function

I +47u o
fu) = 7 , 0 < u < 1. From the second derivative
—u

A8(47u — 11)
V(1 —w)3(1+ 47u)3

f"(u) —

it follows that f is convex on [E 1) Therefore, f is convex on [s, 1), where

zty+z 1 : :
s=———=3 By RCF-Theorem, it suffices to consider x < y = 2. In

1
this case, the problem reduces to show that 0 < 2 < 3 implies
14+ 47x 49 — 472
1/ 2\/ > 15
l—=zx + 1+ —

_ 49 — ATx ) ) ]
Setting t = ¥z (5 <t <7), the inequality transforms into
[1175 ~ 2312

t2 -1

Vv
132
=

15—~
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By squaring, the inequality becomes
350 — 15t — 61¢% + 15t — t* > 0,

or
(t—5)%(t+2)(7~1) 20,

which is clearly true.
Equality occurs when (z,y,z) ~ (1,1,1), and also when (z,y,2) ~ (0,1,1)
or any cyclic permutation. . O

*

11. Let z,y,z be non-negative real numbers, no two of them are zero. If

In3
T 2 19, where rg = e~ 1 = 0.585, then

2z \T 2y )" 2z \T
>3
(y+2) +(z+x '+($+y) -

Proof. We distinguish three cases.

Case r = 1. The inequality reduces to the well-known inequality

x Y z 3
+ + 2 —.
y+2z2 z+zxz x4y 2

Case r > 1. The inequality follows by Jensen’s Inequality applied to the
concave function f(u) = u"

2x 2y 2z

2z \" 2y \" 22 \7 1 +z+ z+zx + T+
+( ) ( ) > Y Y .
(y+Z) 2tz + z+y/ T ’ 3 =3

Case rg < r < 1. Since the inequality 1s homogeneous, we may assume
that z +y + z = 1 and write the inequality in the form

x+y+Z)

J(@)+ 1) + £(2) 2 35 (22

Qu

.
u) , 0 €u < 1. From the second derivative

f”(u)

4r ( 2u

r—2
=(1—u)4 ) (Qu+r-1),

l—u
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— 1) Therefore, f is convex on [s,1),

it follows that f is convex on 5

c+ty+z 1 1-—r ) )
where s = —3 =3 > —. By RCIF-Theorem, it suffices to consider

r <y ==z Itisconvenient to return to the original inequality (leaving aside
the constraint  + y + = = 1) and to consider y = z = 1 (which imples
0 <z €1) Thus, the problem reduces to show that 0 < z < 1 implies
h(z) > 3, where

o) =am+2(2)

The derivative
2) r+1
R(z)=rz" ™} —r ( )
T+

has for 0 < £ < 1 the same sign as the function

g(m):(r-—l)]nz—(r+1)lnm+l

2re4+r—1 l1—-r

From g'(x) = 2@t D) it follows that g¢'(x) = 0 for xg = 5 < I,

¢'(z) > 0 for x € (0,z0) and ¢'(z) > 0 for z € (zo,1]. Then, the function
g(z) is strictly decreasing for z € (0, 2¢] and strictly increasing for z € [z, 1].
Since :11_% g(z)=co and g(1) =0, there exists z; € (0, zo) such that g(z;)=0,
g(z) > 0 for z € (0,z;) and g(z) < O for z € (z,1), hence, /'(x;) = 0,
R'(1) =0, k'(z) >0 for z € (0,2,) and h/(z) < O for z € (z;,1) Therefore,
the function h(z) is strictly increasing for z € [0, 2] and strictly decreasing
for z € [21,1] Since h(0) = 27+ > 270+1 = 3 and A(1) = 3, it follows that
h(z)>3for0 <2 <1

Equality occurs when (z,y,2) ~ (1,1,1) Moreover, for r = rp, equality

holds again when {z,y,2) ~ (0,1,1) or any cyclic permutation 0O
*

12. Let z,y,2 be non-negative real numbers such that x + y + z = 3 If

0<r<rg, where rg = Tn_Bl-llQl_n?,z 171, then

2 (y+2)+y (24 2)+ 2" (z+y) <6
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Proof. We have three case to consider.
Case r =1 The inequality reduces to the well-known inequality

zy+yz+22) < (z+y+2)°

Case 0 < r <1 The inequality follows by Jensen’s Inequality applied to
the concave function f(u) = \/u

(¥+2)274 2+ 2 + (x+y)2" <
(y+2)$+(2+x)y+(x+y)2]r
<2 =
< (a:+y+z)[ Nzt y+2)
T 2r
:6(:cy+yz+zx) <6(m+y+z) - 6.
3 - 3
Case 1 < r < rg. We may write the inequality in the form
x+y+2)
3 ?

1(@)+ 5w + £(2) 2 31 (

where f(u) =u"(u —3),0<u <3 From
J'(w) = = ((r + Du = 3(r - 1)),
3r—3

r+1

it follows that f is convex on [ , 3]. Since

3 r+1’
f is also convex on [5,3] By RCF-Theorem, it is enough to consider
z < y = z. It is convenient to write the inequality in the homogeneous
form

rt+y+2z 1>37r'---3

z+ytz
o(=—
3
to leave aside the constraint z+y + 2z = 3 and to consider y = z = 1 (which
implies 0 < z < 1) The inequality reduces to g(z) > 0, where

7+1
) 2z (y4 2)+y (2 +z)+ 27 (z + y),

3
We have
g’(x):(r+1)($;_2) ~rz"t 1,
7 _T+1($+2 r—1 r—1
9'(@) = —— (3 ) T
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22—
( r)>0,

there exists oy € {0, 1) such that ¢”(x,) =0, ¢"(z) < 0 for z € (0,5;1), and
g"(x) > 0 for z € (z,1] Therefore, the function ¢'(z) 1s strictly decreasing
for x € [0, x,], and strictly increasing for z € [zy, 1]. Since

1
Smce ¢” is strictly increasing on (0, 1], ¢"(0)=—~co and - ¢’(1) =
r

2\ 2\70 r+1 r—1
0= 10 (2) =13 (1) (2) " = T
g (0)=(r4 1) 7 1_(:'"+1)3 1 5 1 5
and ¢’(1) = 0, there exists zo € (0,z;) such that ¢'(z3) = 0, ¢'(z) > 0
for z € [0,29), and ¢'(z) < 0 for & € (xg,1) Thus, the function g{z)
1s strictly increasing for z € [0, z5], and strictly decreasing for x € [z2,1]
.2 r+1 2 7 2 T0
Smce g(0) = 3(5) —-1= 2(5) -12 2(3) —1=0and g(1) =0, it
follows that g{z) >0 for 0 <2 <1
Equality occurs when (z,y,2) = (1,1,1). Moreover, for r = rg, equality

>0

33
holds again when (z,y,2) = (0, 3 §) or any cyclic permutation. )
*
13. If 21,79, ,zn <1 are non-negative real numbers such that
2y Fxa+ -+ oa =r271-,
n
then
VB VT2 _+\/_$72nx/17.
I —x 1 — a9 1—2, 1-r
. Vi
Proof Apply RCF-Theorem to the function f(u) = Too 0<u<li. From
3u? +6u—1
" _
I = /i =@

2 1 2
it follows that f is convex on [ﬁ — 1,1) Since s = 3 > 7§- 1, the

function f is convex on [s,1) By RCF-Theorem and Remark 2, 1t suffices

to show that g(z) < g(y) for0 <2 < s<y<landz+4 (n— 1)y = ns,

f(t) = f(s)
f—s

f(t2) -—f(cz) B I +ct
g(t?) = 2—¢2  (1—-e)(1=t3)(t+c)’

where g(t) = For convenience, let a = /z, b= ,/fand c = /s

We have
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and
9(z) - 9(y) = g(a®) ~ g(b?) =
2 _p2 a? +b% +c(a+b)+c2—1+4ab(1+c?)+abc(a+b)
= (a” - 5% (1—c?)(1~a?)(1 ~b?)(a+c)(b+c) )
Since

o’ + b2 4+ cla+b)+c2 =1+ ab(l + ) + abe(a + b) >
2a2+b2+c(a+b)+c2~12

>a?+ b +eva?+ b2 4% ~1,
1t is enough to show that
z+y+/s(zy)+s-120.

Indeed, we have

ns+ (n ~2)z ns
= >
Ty n—1  “n-1’

and therefore,

x+y+ s(ac+y)+s—1 > (nil +‘/nil+1 's—l > 3s5—1=0.

Equality occurs only for z; =z = .. =z, =, O

Remark. From the final part of the proof it follows that the inequality
holds for the larger condition

Ty +Zg + 0+ Zg 1
::1“2

n n + n :

n—1 n—1+

1
In the case r = , equality occurs again when one of z,
n n
n—1+ n—1+1

is equal to 0 and the other ones are equal to 7
n —

*
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PR

14. If a,b, ¢ are non-negative real numbers such that a + b+ ¢ = 3, then
(1—a+a®)(1=b+b)(1-c+ch)>1

Proof. We may write the inequality in the form

@) + 70 + 7t0) <37 (),

where f(u) = —In(l —u+u?),0<u <3 Wehave
1—-2u 2 — 2u — 1
/ L eu 1 _ su meu—
f(u)*l—-u+u2' f(u) (1_u+u2)2

1 3 b+ec
0, +2\/_} and s = ————-—a+3+c
on [0,s] Therefore, according to LCF-Theorem and Remark 8, it is enough
to show that f'(z) > f'(y) for 0 <z <1 <yand 2z +y =3 Indeed, we
have

Since f 1s concave on = 1, f is also concave

(y—z)(ltz+y-2a2y)  (y—z)(42®-Tz+4)

o) = I W) = =)~ (—e-a) (=37 =
R ()
T (l-z—-2?)(l-y=y?) (l-z-2?)(1-y—y?) =~

This completes the proof Equality occurs only fora=b=c¢c=1 0

Remark 1. Marian Tetiva found for this inequality a nice elementary so-
lution He noticed that among the numbers a,b, ¢ always exist two (let b
and ¢) which are either less or equal to 1, or larger or equal to I; that is
(b—1)(c—1)>0 Thus,

(1=b+b2)(1—c+c?) > (B2 -b)(2—c) + b* + S —b—c+ 1>
>V +c—b—ct1>

1 a’>—4a +5

> 2(bt e (bt + 1=t

and hence,

(1—a + a®)(1=b+ b*)(1- —c+c)-12>
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Remark 2. Actually, the following more general statement holds.
e Let x1,29,. ,x, be non-negative numbers such that

i1+ 2Zg+  +2q
n

=r21
Ifn <13, then
(l—m1+m%) (1-—m2+mg).. (l—mn+xﬁ) >(1—r+72)"

We can prove this statement for n < 10 by following the same way as for
n = 3. We must only showthat 1 + 24+ y— 22y >0for0<z <1<y and

1
(n—1z+y=n. Indeed, for 0 < z < 5 we have

l+z4+y—2zy=1+2z+y(1-22) >0,

1
and for §< z < 1 we have

1+x+y-—2my-_—1+2m—2x2—n(2m-—l(l—m)2
>1+422—222 - 1002z - 1)(1 —2) =

2
:18m2—28m+11=2(3m~g) +é>0

Remark 3. Bin Zhao posted on Mathlink Site, in November 2005, the
following congecture:
e If a,b,c are non-negative numbers such that a + b+ ¢ = 3, then

(I—a+a”)(1—b+0)(1—c+cP)>1

foranyp> 1.
*
15. Ifzy,z9,..., 2, are non-negative numbers such that z1tzet+ - Hxzn =1,
then
1 1 1

+ e —— <1
n—z + n—m2+m%+ +n—mn+a:?l—

Proof. We may write the Inequality in the form

[+ f(@) 4o flm) < nf (B2 H I

n
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1
where f(u) = e al >0 We have
() = 1 —2u and f,,(u):6u(u—l)+2(1—n)

(n—u+ u?)? (n —u+u?)3

Since f”(u) < 0 for 0 < u < 1, it follows that the function f(u) is concave

Tyt g+t
on -0, s}, where s = LT S According to LCF-Theorem

n
and Remark 7, it is enough to show that g(z) > g(y) for 0 <z < 1 <y and

(n— 1)z 4+ y = n, where g(t) = M

t—1
Indeed, we have
(t) = ___LIE__
w = n(n—1t412)
and
(y — x)(n — zy)

9(z) — gly) =

)

>
nn—z+z?)(n-y+y?)
because n — zy > n —y = (n — 1)z > 0. This completes the proof.

Equality occurs for zy =290 = - - =zp =1 a

Conjecture [fz1,z2, .,z, are non-negative numbers such that
x1+$2+"'+$n=n,

then for any p > 1 the inequality holds
1 1 1 <1

..+—____
n—xz+2) n—zo+ 2§ n—Zn + xh

*

16. If a,b, c are positive real numbers such that abc = 1, then

1

1 1
1+a+b+c22\ﬂ+ﬂ+ + -
a b c

Proof. By squaring, the inequality becomes

1 1 1
a2+b2+c2+2(a+b+c)22(;+E+z)+3,

or

f(a)+ f(b) + f(c) > 3f (Vabe),
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2 .
where f(t) = t2 + 2t — 7 t > 0. To prove this inequality, we will apply
RCF-Corollary for r =1 Let

fulw) = J(e¥) = &2 4 2 — 27

From the second derivative f{'(u) = 2™ (263“ + ey — 1), it follows that
fi(u) is convex for u > Inr = 0. According to RCF-Corollary, we need to
show that f(z) + 2f(y) > 3f(1) for 0 < 2 < 1 < y and zy® = 1. This
inequality is equivalent to each of the following

4
m2+2m—2+2y2+4y—-—23,
z y

4y° -3y  — 4y + 22 + 1 2 0,
(-1} y+ Dy +y+1)>0.

The last mequality is clearly true.
Equality occurs ifand only if a=b=¢c = 1. O

Remark Marian Tetiva noticed that

1 1 1
2 2 2 9 — . _ —]—3 =
a“+ b+ +2(a+b+c) 2(a+b+c) 3
=a’+ b+ +2a+b+c)—2ab+bc+ca)—3 =
= (b—c)? + (a=1)? + 2(1—a)(b+ c—2) > 0,

because the allowable assumption a < b < ¢ yields 1 — ¢ > 0 and

a

1
b+c—2>2vbc—2=2(—~-1] >0
(\/_ )

*

17. If a,b,c,d are positive real numbers such that abed = 1, then
(a—1)(a—2) + (b—1)(b—2) + (c—1)(c—2) 4 (d—1)(d—2) > 0.
Proof. Write the inequality as
f(a)+ f(b)+ f(c) + f(d) > 4 (Vabed)
where f(t) = (t - 1)(t — 2), t > 0, and apply RCF-Corollary for = 1 Let

fi{u) = f(e*) =(e* =1 e -2
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From the second derivative f/'(u) = e¥(4e* — 3), it follows that fi(u) is
convex for u > Inr = 0. According to RCF-Corollary, we need to show
that f(z) 4+ 3f(y) > 4f(1) for z < 1 € y and xy® = 1. This inequality is
equivalent to

(5-1) (5 -2) +3w- D=2 20

Y 3
We may write it as
(v— 1) 53y — 1)(36* ~ 1) + 9% + 2y + 1] >0,

which is clearly true. Equality occurs if and only f a =b=c=d=1 [

*

18. If a1, as,. .,an (n>4) are positive real numbers such that a1as.. an=1,
then

(n—1) (af Faly - +ai)+n(n+3) > (2n+2)(a1+ a2+ +ay).
Proof. Write the inequality as

fla1) v flaz)+ - + f(an) 2 nf (Yara2  an),

where f(¢) = (n—1)t2 — (24 2)t + n + 3, t > 0, and apply RCF-Corollary
forr=1 Let

fi(w) = f(e¥*) = (n—1)e? — (2n + 2)e* + n + 3.

From the second derivative f}'(u) = 2e*[(2n — 2)e* —n — 1], it follows that
fi(u) is convex for u > Inr = 0. According to RCF-Corollary and Remark
5, it suffices to show that zf'(z) < yf'(y) for z < 1 < y and zy™! = 1.
Since

zf'(z) —yf'(y)

2(n— l)m2 —(2n+2)z - 2(n— l)y2 +(2n 4 2)y =
=2 —gy)(n—-1)(z+y) ~n~1],

n+1 .
we need to show that z + y > 7 By the AM-GM Inequality, we have

Yy y o xynl nyn—1
— e > = .
Tty m+n_1+ too1 =t (n —1)n-1 n—1
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Therefore, it suffices to show that
nvn—1>n+1
This inequality is equivalent to
1 n
n—12> (1 + —)
n
It is true because for n > 4 we have
1 n
n-12>3> ( 1+ —)
Equality occurs fora; = ag = -+ = a, = 1. O

Remark Using the same way, we can prove the following sharper statement
o Ifai,aa, ., an are positive numbers such that ajay ..an, = 1, then

2ny/n—1
af+ay+-tag-n2———(atart - t-an—n).

(Gabreel Dospinescu and Célin Popa)
*

19. Ifay,as,. .,an are positive real numbers such that aja; . . an =1, then

_ - 1 1
a1 +al 14 el n(n - 2) > (n—1) (—+—+---+L).
aq an An

Proof. We write the inequality as

fla1) + fa2) + -+ + f(an) > nf (Yaraz - an),

n—1
where f(t) = t"~! — — . t> 0 Let

fi(a) = J(e¥) = e=D% _ (n — 1)
From the second derivative
() = (n=1)% "~ (n—1)e™ = (n—1)e™* [(n—1)e™*~1],

it follows that f)(u) is convex for u > Inr = 0, where r = 1.
By RCF-Corollary and Remark 5, it suffices to show that zf'(z) < yf'(y)
for0<z<1<yand zy™ ! = 1. We have

()= (n -1t 22
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and

v = 2f() = (n=1)y"! + P et - T

2_92n
n—1 net_ (R=1) (yn - 1)
= — —(n— >
» (n—1z ey >0
Equality occurs for a1 = as = -+ = an = 1. 0
*
20. Let ay,as,.. ,a, be positive real numbers such that ayja2.. ap =1 If
m > n, then
m . m m 1 1 1
a; +ay + --+a, +mn2(m+1)(—-+—+- -+—*).
at a2 an

Proof. We write the inequality as

fla1) + f(a2) + -+ flan) 2 nf (@162 an),

m+1
where f(t) = t™ - t>0. Let

fi(u) = f(e*) = e™ — (m+ 1)e ™™
From the second derivative
() = m2e™ — (m+ e ¥ = e [mze(m“)" —m— 1] ,
it follows that f1(u) is convex for « > Inr = 0, where r = 1, because
miel™e _m_1>mi-m—1>0.

According to LCF-Corollary, it suffices to show that the given inequality is

true for ap = a3 = --- = an > 1, that is to prove that

m+1 (m+1){n—-1)
x Y

>0

z™+ (n—1)y™ +mn —

for 0 <z <1<yandzy® ! = 1. By the weighted AM-GM Inequality, we

have m(n—1)

g™+ (mrn-m—1)>2mn—1)"Ve= ”
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Then, we still have to show that

(=1 (=) ~me 1 (3-1) 20

xz

This inequality is equivalent to hA(y) > 0 for y > 1, where
h(y) = (n = D)(y™" = 1)~ (m+ 1)(y" ~ y).
Since
—h-’—(-@—: (n=1y™—ny™ 141> (n— 1y —ny™1+1=

m+1
== 1) - ("~ 1) =
— (y__ 1) [(yn-—l _yn—2) + (yn——l __yn—S) +o 4 (yn—l . 1)] > O,

the function h(y) is increasing. Therefore, ~(y) > h(1) = 0. Equality occurs
forai =ag=---=a, =1. [

*

21. Ifay,a2,...,an (n > 3) are positive real numbers such that

veaiay. .an=p>+vn—1,

then
S NN S (7)
(1+a)? (14 ag)? (I+an)? = (14+p)?
' 1
Proof. We will apply RCF- Corollary to the function f(t) = 102
- 1
t > 0. First we must show that the function fi(u) = f(e*) = m)"g

is convex for > Inr, where r = \/n — 1. Indeed, the second derivative is
given by
2e¥(2e™ — 1)
n
u)= —___
HOEE

and for u > Inr, we have

2e* —1>2r—1=2 -3>0.
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T

Therefore, we have to show that (7) is true for ag = a3 =- =@, 2 r and

ajaz  anp = r"; that is to prove that h(z) > h(r) for z > r, where
2n-2 n—1

+ .
(zn~14rn)? (14 2)?

T

h(z) =

The derivative
2(n - Drtz?®=3  2(n - 1)

(.'.l:n_l + rn)3 (m + 1)3 ?

has the same sign as the function

b (z) =

hi(z) = r%mgsl_l(m +1) - "l —

n

Let m = §,m21 We see that

hl(.r) = p™m ($2m+m2m—1)_m3m—1_r3m:

— (mm__rm) (rmmm+r2m_m2m—1) =M (mm_rm)hz(x),

where
2m

hg(ﬂ:) = T'm + *x—m- - .’Bm-_l.
Since ha(z) is strictly decreasing for z > r,
ha(r) =r™12r — 1) =r™"' (2y/n—3) >0

and hy(co) < 0 (ha(co) =7 —1= /3 —2 for m =1, and hy(oc0) = —oo0 for
m > 1), there exists 1 > r such that hs(z1) =0, ho(z) >0 forr < z < 71,
and ho(z) < 0 for z > z; Since the functions h;(z) and h'(z) have the
same sign as ho(z) for z > r, we may say that the continuous function A(x)
is strictly increasing for r < z < zj, and strictly decreasing for z > zy;
consequently, h(z) > min{k(r),h(c0)} Since h(r) = h(c0) = 1, we get
h(z) = h(r) for £ > r, and the proof is complete Equality occurs for
ay = ap = =ay, =p O

Remark We can rewrite inequality (7) as follows.
o Letay, a3, .,an (n > 3) be positive numbers such that ajag ..a, =1,
and let p > /n— 1. Then

+ + > .
(1 +pai)? (1 + pay)? (1 +pan)? =~ (14 p)?

1 1 1 N n
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For n =4 and p = 1, we get the well-known statement:
e Ifa,b,c,d are positive numbers such that abcd = 1, then

S WS SRS B
(1+a)2 " (1482 (14?2 (14+d)27~

(Vasile Cirtoaje, GM-B, 11, 1999)

*

22, If ay, a2, . ,an are positive real numbers such that

Yaay...0a, =p2> n? —1,

th
en 1 1 1 n

+ +-+ >
vVi+ar  V1l+as Vi+ta, ~ J/T+p

(8)

1
Proof. We will apply RCF-Corollary to the function f(t)=——, t > 0.

V1+t’

1
First we must show that the function fi(u) = f(e%) = ——— is convex fo
fi{u) = f(e*) mls onvex for
u > Inr, where 7 = n? — 1 Indeed, the second derivative is given by
_ e -2)

1 (u) = 4(1+e“)%

and for u > Inr, we get

e —2>r—2=n%2-3>0.

We have now to show that (8) is true for ay = a3 = --. = an, > r and
a1ay...an, = 7"; that is to prove that h(z) > h(r) for z > r, where

g+l n—1
e =Tt e
The derivative nea
h’(:l‘) — (n — l)rana - _n;].'_T’
2(3:“_1 4+ rn)'g 2(2: + 1)5

has the same sign as the function

hi(z) = rgﬂﬁx%_l(x +1 —z™ 1,
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where
h'z(m) — r2m . rmmm—l . m?m—!

We see that ha(z) is strictly decreasing for « > r,
ho(r) = r¥™ 1 r - 2) = r "1 (n? —3) > 0

and hy(oo) < 0 Then, there exists z; > r such that ho(z1) = 0, ha(z) > 0
for r < x < xy, and hy(z) < O for z > z; Since the functions hy(z) and
h'(z) have the same sign as hy(z) for z > r, the function h(z) is strictly
increasing for r < < 1, and strictly decreasing for z > z,, consequently,
h(x) > min{h(r), h(co)} Since h(r)=h(oo)=1, we get h(z)>h(r) for z>r,
and the proof is complete Equality occurs for ay =as= =ap=p O

Remark. Inequalities (7) and (8) are special cases of the more general
statement
o Let n > 2 be an integer, and let k < n—1 be a positive number If

ay,ag, ,an are posilive numbers satisfying /ajaz =p 2 nk -1,

h
then 1 1 1 n

+ + - + >
(1+a)% " (1+a2)k (L+a,)k = (1+p)*
(Vasile Cirtoaje, GM-A, 2, 2005)

We can rewrite this statement as follows

o Let n > 2 be an wnteger, and let 0 < k < n — 1 andp>nk -1. 0f
ay,Qy, ., are positive numbers salisfying aja;  a, =1, then

1 N 1 + A 1 > n
(1 +par)f (1 +pag)* (1+pan)t = (1 +p)*

An interesting corollary is the following

o Let n > 2 be an integer, and let 0 < k < n—1 andp—m -1 I
aj,as, ,ap are positive numbers such that ajaa  an = 1, then

1 1 ]
+ ot 7 21
(14 par)k (14 paz)* (1 4 pan)
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*
23. If ay,as,...,a, are positive real numbers such that
Ve am=p <[ -,
then
(1 *i‘lﬂ‘d)2 * (1 +1t12)2 L (1 +1an)2 : (1 ‘:‘113')2 ' )
Proof. We will apply LCF-Corollary to the function g(t) = (1—_’_1—-52—, t>0.
First we have to show that the function f(u) = g(e*) = (_1+1—c**)§ is concave

[ n
for u < Inr, where r = ~— 1. Indeed, we have
n —

et (2t — 1)

') = =

and, foru < Inr,

ze“—1_<_2r—1=2,/RL1—3S2\/§—3<0.

We need now to show that (9) is true foray = a3 = - - = an_; < r and
a1ay...an =r"; that is to prove that h(z) < h(r) for 0 < z < r, where

n—1 r2n-2
hiz) = .
(I) (1 + $)2 + (x‘n—l + T")2
The derivative oo
WMn — 1)php2n— _
W (z) = 2(n—1)r"x 2(n—1)

(mn—l + rn)S - (z + 1)3

has the same sign as the function

. We have

Wll\)

Let n
e m—:;;—,

hi(z) = (r™ — g™) (2™ —pmg™ _p2my ™ (r™ —z™)hy(x),
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where

Notice that lin}J hy(zx) = —o0 and
xr—

ho(r) = ™ 11 = 2r) = r™~1 (3 2 /——)>0
n—1
In the case n > 3 (m > 1), the function hy(z) is clearly strictly increasing

for 0 < £ < r It can be readily checked that this property is also valid for
2
n=2(m= §) Thus, there is z; € (0,7) such that kg{z;) =0, hao(z) <0

for 0 < x < zy, and hy(z) > 0 for z; < 2 < r Since the functions h;(z) and
h'(z) have the same sign as hy(z) for 0 < z < r, the continuous function h(x)
is strictly decreasing for 0 < z < z;, and strictly increasing for z; <z <,
consequently, h(z) < max{k(0),k(r)} From kh(0) = k(r) =n—1, we obtain
h(z) < h(r) for 0 € z < r, and the proof is finished

Equality occurs for a; =az = = an, =p. O

Remark We can rewrite inequality (9) as follows:
o Let aj,a0,. .,ay be pasitive numbers such that ayas  an = 1, and let

— 1. Then

n—1

1 1 1 n

<
Arpay T Uipany T pen)? = T+
*

24, Ifay,a2, ,an (n > 3) are positive real numbers such that

v"ala2---an=PS (n_1)2)

then | i | i
+ +- + < ) 10
Ve e e~ JTFs (10
1
Proof We will apply LCF-Corollary to the function f(f)= ATT t>0
1
First we have to show that the function fi(u) = f(e¥) = is concave

1+ ev
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o2n—1
for u <Inr, wherer = W Indeed, the second derivative is given by
e“(e¥ —2
filw) = S22
4(1 + e¥)?

and for u < Inr, we get
-2n? 4+ 6n—-3 2n(3—n)
< 0.
(n—12  “T-12 °
We need now to show that (10) is true for @) = ag = -+ = an—; < r and
ajay...an =r", that is to prove that k(z) < h(r) for 0 < z < r, where

et —2<r-2=

n—1 zn-l

h =
&= Ve

The derivative ne3
— 1Vt —
h’(l‘) = (n l)r ad 3 n 1 3
2et 1) 2t 1)

has the same sign as the function

hi(z) =r T3 Yz 1) -2 —

n
Letm=§,m21 We see that

hi(z) = r¥™ (g™ 4 g™ ) — gBml M o
= P2 (g™ ™) g (P2 ™) =
= (™~ 2")haz)
where
ha(z) = ¥l mpm=l _ 2m
Notice that ho(z) is strictly increasing for 0 < z < r, h2(0) < 0 and
ha(r) = r2™ 12 —r) > 0

Therefore, there exists z; € (0,r) such that hy(z;) = 0, hy(z) < O for
0 <z < x,and he(z) > 0 for 2; < z < r. Since the functions hi(z)
aud /() have the same sign as hy(z) for 0 < z < r, the function h(z) is
strictly decreasing for 0 < x < zj, and strictly increasing for x, <z<ry
consequently, h{z) < max{k(0),h(r)} From k(0) = k(r) = n— 1, we obtain
h(z) < h(r) for 0 < z < r, and the proof is finished. Equality occurs for
4] =82 = -+ =dp =P O
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Remark Incqualities (9) and (10) are special cases of the more gencral
statement.:

e Let n > 2 be an integer, and let k > be a positive number. If

ar,aq,. ,ap are positive numbers satisfying

1
Vaim e =p< () -1,

then the inequality holds

1 N 1 n ' 1 n
(1+a)® (14 ag)* (1+an)" =~ (1+p)*

(Vasile Cirtoage, GM-A, 2, 2005)

We can rewrite this statement as follows:

D omdo<p< ()21
lan <p_(n_1) .

n —
Ifaj,ay, ,a, are positive numbers satisfying ajay...a, =1, then

o Let n > 2 be an integer, and let k >

1 1 1 n
-+ e+ - <
(14 par)* * (14 pag)* (14 pan)® =~ (1 +p)*

An interesting corollary is the following:

1
e Let n > 2 be an integer, and let k > -

n \F
landp:(——) -1 If

n—1
ay,as, ..,an are positive numbers such that ajag. an =1, then
L L <a
(1+pai)* * (14 pag)* (14 pan)* =
*
25. Ifay,ay. ,a, are positive real numbers such that t/ajay . =p>1,
then
: + ! + + ! >
1+ai+ +ap ! l+agt - +af”! l+an+ - +ad™ ' =
n

> ) 11
T 1l+p+-o+pt! (1)

Proof We will apply RCF-Corollary to the function

1

= t>0
1) T+etr ot
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First we have to show that the function fi(u) = f(e*)= EET——
is convex for u > Inr, where r = 1; that is for u > 0 Setting y = e* (y > 1),
the necessary condition f”(u) > 0 reduces Lo

2y+ 2+ -+(n—1)y““]22
2p+2°+ -+ (-0 14y 4+

We will prove this inequality by induction over n. For n = 2, the inequality
becomes y(y—1) > 0, which is clearly true. Suppose now that the inequality
1s true for » and prove it for n + 1, n > 2. Using the inductive hypothesis,
we still have to show that

(" - 1)+ ary+ a4+ - +an1y" ' >0,
where a; = 3n? — (2n — ¢)? Since
a <ag< - <apand y<yP <o <yt
by Chebyshev’s Inequality we get
n(ay+asy’+ - +anay™?) > (a1 tagt - tan)(y+yi+- - +ym).
Thus, it is enough to show that a; + a2 + -+ + ap_; > 0. Indeed, we have

n(10n? — 150 — 1)

0
5 >

ay +as + +an_1 =

Finally, it remains to show that (11) is true foray = a3 = --=a, > 1 and
@103 .. an = 1; that is to prove that

fle)+ (n=1)f(y) 2 1,

for0<z<1<yandzy®! =1. Settingk =n — 1, k > 1, the inequality
is equivalent to

h(y) 2 h(1),

where
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[For the nontrivial case y > 1, we write successively the inequality k(y) > k(1)

as follows:

k 1+yk+__ +y(k—1)k

l+y+-- 4y~ L4yt +45 7
ky—1) v -1 gk—1
yk+l_1—yk__1 y(k+1)k_1’
Ky-1) _ y¥ -1
yk+1_1—y(k+1)k_1’
yk(k+1) 1 yk'-’ 1
yF+l —1 y—-1"~

k[1+yk+1 4 2R | __+y(k—l)(k+1)] S14yto? fo 4 yEDERD

B[ 1+ygF o2 o+ 4 5 0E] >
>4yt R DR

Since !} <y < 3% <

<y land 1l <y* < y?F < -

< y* Dk the last

inequality is Chebyshev’s Inequality applied to the k-tuples

(Ly, .

This completes the proof

ap = Qg =+ = Q.

,¥*7") and (1,95, ..

,y(k—l)k)

For n > 3, equality occurs is and only if

a

Remark For p =1, we obtain the following nice statement:

o [fay,az, . ,an are positive numbers such that ajay...a, =1, then
1 1 1
n—1 + ~1 + + n-l 2 ]
I4a;+ - +ay l+az+ - +ay l+ap+ - tan
In the case n = 4, the well-known statements follows
e If a,b,c,d are positive numbers such that abed = 1, then
1 + 1 N 1 N 1 51
(1+a)(1+a?) * (1+b)(14+62)  (1+c)(1+¢?)  (14+d)(14+d?) =

( Vasile Cirtoaje, GM-B, 11, 1999)
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26. Ifay,ay,.. ,an are positive real numbers such that ajag ..a, > 1, then
1
a +ar+ -+an— Yaiaz.. an22—-§ Z (lnaimlnaj)z
" 1<igign

Proof Since

n n 2
Z (lnal—lnaj)anZlnzai—(Zlnai) =
i=1

1<i<j<n i=1

= nz In? a; — 11’12(010-2 . Gn),

i=1

we may write the inequality as

flar) + fla2)+ -+ flan) 2 nf ({araz .. an),

1
where f(t) =1t o In?¢,t >0 The function

has the derivative !
H u
u) =et— =~
p () -

Since fi'(u) > 0 for u > 0, the function f(u) is convex for u > Inr, where
r =1 By RCF-Corollary and Remark 5, it suffices to show that

zf'(z) <yf'(y) for 0O< <1<y and zy" =1

We have .
tfliy=¢t— =
(1) ~ Int,
and
! / 1 1 1
yf (y)'—ﬂi‘f (.’):):y——-— lny—~:r+— lnx:y-—-x-—lnyzy— lulny.
1
Let h(y) =y — — — Iny. Since
yn
-1 1 -1
Hy)=1+"0r—-->2"" 50,

yu oy y"
the function k(y) is strictly increasing for y > 1. Therefore, h(y) > k(1) =0
and hence yf'(y) — xf'(z) > 0.

Equality occurs for ay =ag = -+ = a, = 1. O
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*
27. If ay,ay,.. ,a, are positive real numbers such that ajay. .a, =1, then
1y 1y9 1y
(- () () e
n n n

x;

Proof. Setting a; = for each i € {1,2,...,n}, the statement

Inn—In(n—1)
becomes as follows:

o Ifxy,x29,..., 2, are positive numbers such that

n

Yrizy.. zp,=r=1In ,
n—1

then
el e 4 ... e < ne”’.

We may write the inequality as

f(al)+f(a2)+- -+f(an)_<_'nf(v"a1a2. .@n),

where f(t) = e, t > 0. The function

has the second derivative
() = (& — 1)~

Since f{'(u) < 0 for u < 0, the function f(u) is concave for

#w<Inr=Inln

" <0
1 <
According to LCF-Corollary, it suffices to show that
(n—1e "+ e ¥<ne "

for0<z <r<yand 2" 'y =r". That is g(z) < g(r) for 0 < z < r, where

rn

:L-n—l

glz)=(n—1)e"*+e¥, with y=

Since e
glx)=r"—2"eV" ",

n—1
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it follows that Lhe derivative ¢’ has the same sign as the function
gifz)=r"—2"e¥"

From
e Vgl (z) = 2" - n2" 1 4 (n - 1)r",

we find that ¢](z) has the same sign as the function
hiz)=z"—nz"" ' 4 (n— 1)r"

The derivative of h(z) is given by #'(z) = nz"~?(x —n+ 1). Since h/(z) < 0
for 0 < r < r, the function h{z) is strictly decreasing In addition, since
h(0) = (n—1)r" > 0 and h(r) = nr"~!(r — 1) < 0, it exists z; € (0,r)
such that k(z) > 0 for z € [0,z,), h(z:) = 0 and k(z) < O for z € (z1,7}.
Therefore,.the function ¢;(z) is strictly increasmg on (0,z;] and strictly
decreasing on [z;,r] Since g;(0;) = —oo and g;(r) = 0, it exists 25 € (0, z4)
such that g;(z) < 0 for x € (0,23), g1(x2) = 0 and g¢;(z) > 0 for z € (z2,7)
Consequently, the function g(x) is strictly decreasing on (0, 23] and strictly
increasing on [zg,7|. Since g(04) ==n—land g¢(r)=ne "=n—1= 9(04),

we get g(r) < g(r) forO<z < r Equality occurs fora; =a3=. =a,=1 O
*
28. Ifx1,x9,...,2, are non-negative real numbers such that

ry+zxo+ -+ x5 =mn,

then
)

nTE 4 nTTE . g > 1

Proof We may write the inequality as

»

Il+3:2+" +xn)
n

fl@)+ f@) + -+ f(za) 2 nf (
where f(u) =n~ “2, u > 0. from the expression of the second derivative
") = zn—“2(2u2 mn—1)Inn,

Trtzot.. +Tn
~ =

it follows that f is convex for u>1, and also for u > s= 1.

By RCF-Theorem, it suffices to prove the mmequality for

T1f 1S y=23="-- =1,
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Let
g(z) = 4 (n— v —1,
wherez+ (n— 1)y =nand 0 <z <1 <y. We have to show that g(z) > 0

for 0 < z <1 Taking into account that ¢’ = 7 we get

g'(z)=2 (yﬂ_y2 - :m—a:?) Inn
The derivative ¢’ has the same sign as the funtion
g1(z) = In (yn—yz)—ln (xn—zz) =lny—Inz + (22—y?)Inn
From
-1

(n—1)y
—1 2+2(n-2)x
[a:(n — ) (n—1)2

gi(z) = —é—l—Q(m{-—y—])lnn——

n n] ,
we see that ¢ (r) has for 0 < z < 1 the same sign as the function

—{n—1)?

o +z(n—z)[1 + (n — 2)z]

h{z) =
The derivative of k(x) is given by
R (z) =n+2(n? —2n— 1)z - 3(n— 2)z°.
Since
K (z)=n+2n?—2n— 1)z —3(n—2)z?>
>nz+2n?—2n—1)z-3(n—2)z=
=2n—-1)(n—-2)x >0

for 0 < x < 1, the function h(zx) is strictly increasing Since 2(0) < 0 and

1) = (n— 1)2(1 ~ 3
z € |0,z), h(z;) = 0 and k(z) > 0 for = € (z;,1] Therefore, the function
g1(xz) is strictly decreasing on (0, z1] and strictly increasing on [z, 1] Since
¢1(0,) = +oo and gi(1) = 0, it exists 2o € (0,z1) such that g;(z) > 0
for £ € (0,z2), ¢1{z2) = 0 and g;(z) < O for z € (z2,1) Consequently, the
function g(z) is strictly increasing on [0, 29| and strictly decreasing on |23, 1]
Since g(0) = (n — n=(F21)" > 0 and (1) = 0, it follows that g(z) > 0 for
0 <z <! Equality occurs if and only if 21 = 23 = =z, =1 O

) > 0, it exists 21 € (0, 1) such that h{z) < O for
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*
29. Let z1,x9,...,xzn be non-negative real numbers such that
1tz + - +x,=n.
Prove that
2(m?+x%+---+z2) +n2< (2n+1) (m?+m§+ - +a:,21)
Proof Write the inequality in the form
flz1) + flza) - + flzn) <O,

where f(z) = 22°— (2n+1)2? +n. Taking into account the second derivative

f(z) =2(6z—2n—1),

. ) 2n +1 2n+1
it follows that f is concave on [0, ] and convex on [ 5 ,oo)

6
By LCRCF-Theorem, the sum E = f(z1) + f(z2) + - + f(za) is maximal
for z; = 29 =-- =2z,_; < z,. Therefore, it suffices to prove the inequality

(n—1)f(z) + f(y) €0,
for 0<z<1<yand(n—-1)z+y=n. The inequality is equivalent to
n(n— 1)z [2(n - 2)z% - (4n - 7)z + 20— 2] > 0.
It is true because
2(n—2)z°— (4n—T7)z + 2n—2 = 2(n—2)(z—1)% + 2—2z > 0.
Equality occurs if one of z; is equal to n and the other ones are 0. O
*

30. Let z,y, z be positive real numbers such that = + y+ z= 3. Prove that

1 1 1
8(-+—+-)+9210(m2+y2+z2).
T Yy oz
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Proof. Write the inequality in the form

flz)+ f(y) + f(2) <9,

4(5¢% — 4)

8
where f(t) = 10t2—~t—. According to the second derivative f"(t) = T

4 4
the function f is concave on [O, \:%—;—] and convex on [3 —5-,00).

By LCRCF-Theorem, the sum E = f(z) + f(y) + f(z) is maximal for
z = y < z Therefore, it suffices to prove the inequality

2f(z) + f(2) <9,
for 0<z<1<zand 2z + z = 3. The inequality is equivalent to
40z* — 14023 + 1742% — 89z 4 16 > 0,

or

(2z — 1)?(102% — 252 + 16) > 0

Because
1022 — 252 + 16 = 10(z — 1)* + 6 — 5z > 0,

the inequality is clearly true. Equality occurs if and only if two of z,y, 2 are

1
equal to —, and the other one is equal to 2 O



Chapter 4

On Popoviciu’s inequality

4.1 Introduction

In 1965 the Romanian mathematician 7. Popoviciu proved the following
inequality

f@)+ fu) + () 4 3f (FEEE) >

227 (S52) 21 (15) +21 (557,

where [ is a convex function on an interval / and z,y,2 € I.
A Lupag generalized this in 1982, in the following form (where p,q and
7 are positive numbers):

PIE)+af ) 4754 (g f (EEETEEE)

>(p+q)f (Ix;—igg) +(g+7)f (‘721:1) +(r+p)f (""iiﬁm)

In 2002 and 2004, we extended Popoviciu’s Inequality to n variables 5,
6], as follows

Theorem 1 (Generalized Popoviciu’s Inequality) If f is a convez
function on an interval I and a1,a2,...,4, €1, then

fla)+flaz)+ -+ f(an)tn(n=2)f(a) 2 (n~1) [£(bs) + F(be) + -+ + F(bn)],

aytag4 - 4 ay, 1
here a = db; = ' ]
where u ~ , and b; — lf‘;;aj for all i,

193
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Theorem 2. If f is a conver function on an inlervall and a1,a2, ,a, €1,
then

O O O R Y CEF I W G

=S cicign

art+a+ - +an
where a = )

n
Soon after these inequalities were posted on Mathlinks Inequalities Fo-
rum, Bill Zhao conjectured the following general statement

Theorem 3 If f is a conver function on an intervall and ay,a2, ,an €1,
then

(;:21) e+ fa) 4+ fa)] +n(:1__22)f (a1 +az +- -+an) 2

n
Z aig +aig+ - +as
> f( il i2 tm)
. . m
I1<ij< <im<n

Dariy Grinberg posted in 2005 on Mathlinks Inequalities Forum a long
proof of this mequality by induction over n.

In this section, we will prove the first two theorems, and then will
give some applications of these Our proof relies on Karamata’s Inequality
for convex functions, which we now recall. ~We say that a vector

—

A = (a1,09,.. ,an) with ¢y > a2 > - > a, majorizes a vector

s

B‘ = (b],bg, ,bn) with b] > b2 > 2 b,,, and write it as A‘ > B,
if

a; = by,
a1 + ap > by + bo,

ay+as+- -+ any 20 +b2t+ -+ bao,
al+a2+"'+an:bl+b2+" +bn

Karamata’s Inequality states that for any convex function and A> B, the
following incquality holds-

f(al)+f(a2)+"'+f(an)Zf(b1)+f(b2)+' +f(bn)

Proof of Theorem 1 Without loss of generality, we may assume that n > 3
and a1 < ap < - - < anp. Then there is an integer m with 1 <m < n -1,
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such that
a1 < Sapfafan1 < <aon

and
b12 "2bm202bm+12"'2bn:

ay+as+- +a o .
where a — — 2 . It is clear that the required inequality that

we are trying to prove is the sum of the following inequalities
flar)+- + f(am) + n(n—m—1)f(a) 2 (n—1) [f(bm+1) + - + f(bn)], (1)
flams1) + -+ flan) + n(m—1)f(a) 2 (n~=1)[f(b1) +- -+ f(bm)] (2)
In order to prove (1), we apply Jensen’s Inequality to get
f@) 4+ -+ f(am) + (n = m = 1)f(a) 2 (n = 1)1(),
where

a1+ ~+am+(n—-m-1la
n—1

b ==

Thus, we still have to show that

(n—m—1)f(a)+ f(b) 2 f(bms1) + - + f(bn).

Sincea > by > - > byand (n—m~1)a+b=1b,  + - +by, weseethat

Apermn = (a,. .,a,b) majorizes Bnom = (bm+1,bm42,.. ,bn) Consequently,

the inequality follows by Karamata’s Inequality for convex functions.
Similarly, we can prove inequality (2) adding Jensen’s Inequality

flame1) + - + f(an) + (m—1)f(a)
n—1

> f(c)
and the inequality

fle)+(m - 1)f(a) 2 f(b1) +- - + f(bm),

where

it + o+ an+ (m—1)a
n—1 )

The last inequality follows from Karamata’s Inequality, because

by >-->b,>a and c+(m—1a=by+- -+ bp,
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and therefore (f'm = (c,a, . ,Q) Majorizes D,, = (by,ba, ,bm) 0

Proof of Theorem 2 We will prove this by induction over n For n = 2,

one has equality Suppose now that n > 3 and the inequality is valid for
a) + as + + a,

n — 1 We will show that it holds for n Let a = and let
n
a; +as+ - +a,_
€= — 2n 7 L According to the induction hypothesis, we have
a;+ay
(n=3) [f(a)+f(a)+ - +f(an-)] + (-D)f(z) 22 Y (224
1<i<i<n—1 <

Thus, it suffices to show that
fla1) + flag) + -+ flan-1) + (n — 2)f(an) + nf(a) 2
> (n—1)f(z) +9Zf(a1+a").

By Jensen’s Inequality, we have

flar) + fa2)+ -+ flan-1) 2 (n— 1)f(2).

Hence, we just have to show that

(n—2)f(an) + nf(a) 2 °zf(“1+“").

‘lai+a

n
Since (n—2)an+na = 2 Z " we will again use Karamata's Inequality
i=1

for two cases.
Case 2¢ > mm{ay,a2, ,en} + max{ai,ap, ,an} Without loss of
generality, assume that

a; = max{aj,a2,...,an}, an = min{a,az, ,Gn}.

Then, 2a > a; + a,. According to Karamata’s Inequality, it is enough to
show that

- a1+ a, a2tan P
un S min 2 ? 2 1 b 2
and
a)+an a2+ an an-1+ an
g 2 max 5 ) 5 ; ,——“?—
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The first condition is clearly true, while and the second condition reduces to
ey +ay

Case 2a < min{ay,as,. ,an,} + max{aj,as, ,a,}. Without loss of
generality, assume that

a1 = min{ay, a2, .,an}, ¢n = max{ae;,az,...,an}.

Then, 2a < a; + ¢, According to Karamata’s Inequality, it is enough to

show that
2 < min a1 +an a2 +an Upn-1 + an
— l 2 ¥ 2 1 1 2
and
> max ar +an az+aq Up-1 + an
Gn = Mmax 5 Ty 5
... a; + an . . .. .
The first condition reduces to a < 5 while the second condition is
clearly true O

Remark The generalized Popoviciu’s Inequality may be rewritten in the
following form

_ fla)+ f(oa) + o+ f(an) = nf(a)
FO)+FE) + F [(n) — nf(a)

For some convex functions, the greatest lower bound of E,, is just n — 1,
but for other functions, the greatest lower bound of E,, is greater than n — 1.
In this last case, the generalized Popoviciu’s Inequality may be improved
For instance, for the convex function f(z) = z2, the equality holds

En(al,a2; ,an) n—1

a? + a3 + - + a2 — na?
b2 + b3+  + b2 — na?

= (n - 1)2a

while for the convex function f(z) = 23, £ > 0, the greatest lower bound of
E, is
(2n —1)(n —1)3
3n? —5n 41

Cherefore, if a1, az,. .,a, are non-negative numbers, then

al +ad + - +ai—na3> 2n—1)(n-1)3
BB+b34- 103 —na® = 3n?—5n+1
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On the assumption that a; + as + - + an = n, this inequality is equivalent
o the first inequality from the section 3 4.

(n—l)(a?+a§+- +aﬁ)+n22(2n—1)(a%+a%+-- +a%)

For n > 3, equality holds when either a; = a2 = = ap = 1, or one of ¢;
n
equals zero and the others equal T
n —_—
4.2 Applications
1. If ay,as,...,a, are positive numbers such that ajaz...a, =1, then

1 1 1
a4l Rt }-n(n-2)2(n—l)(—+—+. .+—)
a) ap Gn

2. If a;,a2, ,an are positive numbers such that aja2 .a, =1, then

M ral - al  a(r-2)2

— 1 1 1
2> (al+a2+"+an+_+_+'+—‘)
a, an an
(Bin Zhao, MS, 2005)
3. If ay,a2,.. ,an are positive numbers such that ay +as + ---+an = n,
then
(n—a1)(n—a2)...(n—ap) 2 (n—1)" "Vajaz @
4. If ay, e, . ,uy are positive numbers, and b; = ~—;—12 a; for all i, then
T A
b b b a a a
_'+_g+...+__"_2_1+_2+...+_1‘__
a;  az a, by b b,
5. If 1,20, . ,zn are positive numbers such that
1 1 1
ntz2t+ +Tn=—+—+ -+ ——,
) x9 In
then
1 1 1
-+ > 1,
a) 1+(n-1):r1+1+(n—1):z:2+ 1+ (n— 1)z, ~
1 1 1
e e ——— 1
b) n-1+m1+n—1+x2+ *-n—l-{—:rn‘

(Vasile Cirtoaje, A MM, 1996)
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6. Ifay,as,...,0, (n > 3) are positive numbers such that a;+as+ +a, =1,
then

1 1 n
(al+l-2) (a2+l—2)...(an+_-2)2(n+-—2) .
ai as an n

7. If 2y,29,.. ,z, are positive numbers such that
1 1
I1+r2t +Ihn=—+—+ +—=mns,
Ty I3 Tn
then
1 1 . 1
zr+n—1 2z2zo04n-—1 Thn+n—1"
1 1 1
> + R U ——
ns—z;+1 ns—zp+41 ns —zr, +1

(Gabriel Dospinescu, MC, 2004)

8. Let x1,22, ..,z (n > 3) be positive numbers satisfying z;22 .z, = 1

1 1 1 n
+ +o-et < :
v1+pz /14 px Vi+prn T J1+p

(Vasile Cirtoaje, and Cabriel Dospinescu)

9. If zy,22,...,2, are positive numbers, then
(n—1) (:z:f +ai 4. +xi) +nyziz? 22> (42t + 1)k
(F. Shleifer, Kvant, No 3, 1979)

10. If a,b, ¢, d are positive numbers such that ab + be + c¢d + da = 4, then

(1+%) (1+%) (1+%) (1+§)2(a+b+c+d)2.

4.3 Solutions

1. If ay,az,...,an are positive numbers such that ajay . . . an = 1, then

a’f'l-l—ag'l—l— cotall n(n —2) 2 (n—1) (-al—+a1—+.,.+i) . (3)
, 1 a2

Qn
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Proof. The inequality follows from generalized Popoviciu’s Inequality (Theo-

rein 1) considering the convex function f(z) = e® and replacing a1,a2, ,@n
with (n — 1)Ina;,(n —1)Inay, ,{n—1)lnay, respectively
For n > 3, one has equality if and only if a; = az =+ - =ap, = 1. O
22 o 22
Remark Forn = 3 and a1 = —, ap = —, a3 = —, one obtains the
yz 2z Ty

known inequality
28+ % + 25 + 3(zyz)? > 201323 + 222 + ).
*
2. If a1, a9, ...,an are positive numbers such that ajaz  an =1, then

A +al T4 tat b n(n—-2) >
- 1 1 1
2 (al+02+ +ant+—+—+-- +——)
2 Q1 an Qn

Proof We can get this inequality by adding (3) to the inequality
a4t 4T+ nn—-2)> (n—1)(a; +az+ - +an)
The last inequality follows by adding up the inequalities
A" ltn-2>(n-1g
for all 7 We have

a4 n—2-(n-1)a; = a1 -1-(n—1)(a; - 1) =

i

= (@ -1 -1+ @ -+ +(a-1]20.

For n > 3, equality occurs if and only if ¢y = ap = -+ =ay, = 1. ]
*
3. Ifay,a3, .,a, are positive numbers such that a; + a2 + --+ap = 7,
then

(n—ai)(n—az). (n—an)2(n—1)""Vaez." an

Proof We apply Theorem 1 to the convex function f(z) = —Inz for 2 > 0
For n > 3, one has equality if and only if a; = az =---=an =1 0O
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Remark Since ) + a3 + --- + @, = n implies aja9 ..a, < 1 (by the
AM-GM Inequality), the above inequality is sharper than the inequality

(n—ay))(n—as).. (n—a,)>(n-1"qas. .ay,
which easily follows by multiplying the inequalities

n—ay=ay+- +a,=2(n-1"Vay . a,,

n_anzal+"'+an—12(n_l)"_\/lal ay—| -

*
4. If ay,aq,.. ,a, are positive numbers, and b; = -—~—Za3 for all i, then
n J#t
b b b, a
2424 +—>—+—+-+i. (4)
a) a9 bl b2 bn
a+a+---+a )
Proof. Let a = : 2 ®  Using the relations
mn
(n-1)b _mne g E_Te_ L
a; a; bi bi
fori=1,2, . ,n, the inequality becomes
| 1 1 n{n — 2 1 1
*+—+m+—+i——l(mﬁm + =+ +—)
a)  ap Qn a be by

This inequality easily follows from generalized Popoviciu’s Inequality, if we

1
consider the convex function f( x) = for z > 0. Forn > 3, one has equality

ifandonlyifa; =ay =--- =1 O
*
5. Ifxy,z2,. ,z, are positive numbers such that
1 1 1
T +xr2t +Tp=—+—+ -+ —, (5)
I I2 I
then
1 1 1
a + . > 1;
) 1+ (n—1)x, 1+(n—1):1:2+ 1+ (n—1)z, = (6)
1 1 1
) n—1+m1+n—1+m2+ ”+n—1+$n_1 )
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Proof. a) This inequality may be derived from (4) using the following way.
Suppose that inequality (6) is false; that is
1 1 |

: 1.
1+ (n—- 1) + 1-|—(n—1):r2+ +1+(n—1)mn <

Then we will show that (5) also does not hold In order to show this, let

1 — a;
z; = ———— foralli =1,2,...,n. Then, the above inequality yields
(n - l)ai

a1 +az+ -+an <1

and hence

1—a; > ZG’J (n—1)b

j#
foralli=1,2,. .,n Consequently,

R LIRS o).
1+z2+- T = ) —
~(n—1a = {Ha
Taking account of (4), we get
b ", a; " (n—1a
=% % 3 ai
1 1 1
= b — e —,
T b)) Tn

which shows us (5) does not hold. For n > 3, one has equality if and only if
ry=I9=""r=Ip=1
b) Substituting 1/z; for z; in (6) and noting that (5) is still satisfied

gives us
A I3 In

e —1 >,
n—1+$1+n—1+m2+ n—1+ 2z,

which is equivalent to (7). a
*

6. Ifai, a2, ,a, (n > 3) are positive numbers such that aj+az2+---+an = 1,
then

1 1 1 n
(a1+—1-—2) (a2+——2)...(an+——2)2(n+——2)
a az Qn n
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4 3 Solutions
Proof. Applying generalized Popoviciu’s Inequality to the convex function

f(z) =—Inz for x > 0, we get

@ +ay+ -+ an

n(n—2)
(bibg ... ba)""L > (@107 .. an) ( i )

H

1
where b; = —I—Z a; for all i. Under the condition @1 +az+ -+ an =1,

#i
this inequality becomes as follows
n“—n
(1—a))" (1—ap)*™ . (1=ap)* ! > " (1— ;) a1a2...0n. (8)
On the other hand, by the AM-GM Inequality, we have

Q-a)+Q—a)+- +(1—az) 2n{(1—a)(l—a2)...(1—axn),

that is N
(1—;) > (1—a;)(1—az)...(1 — an).

From this inequality, for n > 3 we obtain

n{n—3)
(1—%) (1—a)*1—a)?...(1—an)? 2

>(1—a)" (1 —a)" ... (1 —an)"h

Multiplying this inequality and (8) yields the desired inequality. Equality

1
occurs if and only if @y = as = -+ - = ap = —. O
n
*
7. If 21,23, ... ,2, are positive numbers such that
1 1 1
yt+zrst+-+rp=—+—+---+— =ns,
I I3z In
then
1 N 1 1
zy+n—1 z9+4n-1 Tp+n-—1"7"
1 1 1
ns— T, +1

>
_ns—m1+1+ns—$2+1
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Proof. By the Cauchy-Schwarz Inequality, we have

1 1 )
(1‘1+332+---+.’L‘n)(—+—+ +—)2n,
| T2 In

whence s > 1 follows. Applying generalized Popoviciu’s Inequality to the

convex function f(z) = - for z > 0, we get

1+ (n—1)

- 1 n(n —2) z I
Zl+(n—1)xi+1 l—(n—l)sz(n_l)zns—mi-}—l

i=1 i=1
Thus, we still have to show that

n 1 n 1 n('n—?)
(n—l)zm221+(n—l)xi+ 1¥(n—1)s

i=1 i=1

For n > 3, this inequality is equivalent to

= 1 I+(n—1)s’
=1 ($,+n—1)(—+n—1)
I;
or
1 + 1 L. 1 o 1
A A A, T 1+ (n—-1)s’
1
where A; = (n — 1) (:r,- + —-) +n? —2n 4+ 2. By the AM-GM Inequality, we
x;
have
1 4+ 1 P 1 S n? _ n
Al Az A T A1t+A2t+ - +An 2n—1)s+n2—2n42°

Consequently, it is enough to show that

n S 1
An—1Ds+n2—-2n+2 " 1+ (n—1)s

It is easy to check that this inequality is true for s > 1. For n > 3, equality
holds if and only if ) =29 = - =2, =1 |

*
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8. Let xq,23, . ,x, (n = 3) be positive numbers satlisfying x1x9 .x, = 1.

2n—1

If0<p< 5. then

(n—1)
1 1 1 n
e e -+ < .
Vi+pzry 1+ pxe Vi+pr, — JV1i+p

Proof We suppose that the reverse inequality holds

1 1 1 n
+ + 4 > ,
Vi+pzr /14 pzo vit+pzn  1+p

and show that this inequality implies 2123 .z, < 1, which contradicts the

1+
hypothesis x;z5. .z, = 1 Using the substitution 1 4 px; = 2p (a; > 0)
a

foralli =1.2,..  n, we have to prove that a; +az;+ + a, >n yields

(1+p—a¥) (1 -I—p*ag) (1+p—a?1) < pMajaz . an)?.
Since the ratio (1 +p—- ai?) /a} is increasing when a; is decreasing, it suffices
n
n—1’

to consider the case ay+-ap+-- +a, = n. Denoting 14+p =¢2,1 < ¢ <
the inequality becomes as

(¢-a) (¢ ~ad) (¢ —al) <(@-D'(@az.. a)> (9

Applying the generalized Popoviciu’s Inequality to the convex function

f(m)z—ln( nl—z) for 0<z <1,

gives us
(a182...a,)"" ! 2> [n—(n—1)a,] [n—(n—1)ay]...[n—(n—1)a,]. (10)

On the other hand, Jensen’s Inequality applied to the convex function

_,n—(n—-1)z
f(sc)—ln-——-——q_m ,

yields

[n—{(rn—Dai}[n — (n - 1ay]. n—(n - 1)ay] > 1
(1—ai){g—az) .(¢—ay) BCERYi
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Multiplying (10) and (11) yields

wan  aan-ls @ a)g—a2).. (g—an)
ez el 2 (g—1)"

Thus, in order to prove (9), we will still have to show that
(a1az...a0)" (g +ar)(g+a2) . (g+an) < (g+1)"

By the AM-GM Inequality, we have

=1

a1 +az + -+an)"

ajag ..ang(
n

and

ay +az+ - + n
1 2 an) = (g + 1),

(g4 a1)(qg + a2) . (q4an)5(q+ -

from which the conclusion follows.
Equality holds if and only if £y =29 = =z, =1 O

*
9. If;,zq,. .,x, are positive numbers, then
(n—1) (e? + 2+ -+ a2) +nifaled.. 22> (m b aad o+ za)
Proof. This inequality follows by Theorem 2, using the convex function

f(z) = € and replacing a,0a3,.. ,a, with 2Inz;,2lnze, ,2Inz,,
respectively. Finally, one uses the identity

2 Z rix; = (T1+ T2+ - +mn)2—(mf+m§+- +x31)
1€i<j<n
For n > 3, equality holds if and only if £y =22 = -+ =11, O

10. If a,b,c,d are positive numbers such that ab+bc+ cd + da = 4, then

(H%) (1+ g) (H%) (HS) > (a+b+ctd)?.
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Proof. Applying Theorem 2 to the convex function f(z) = —Inz, we get
(@ +b)(b+c)(c +d)(d+a)a+ c)(b+d) > dabed(a+ b+ ¢ + d)?
Since (a + ¢)(b+ d) = ab } be + ¢d + da = 4, the inequality becomes

(a+6)(b+c)c+d)(d+a)> abed(a+ b + ¢ + d)?,

(H%) (1+g) (1+%) (1+—§) > (a+b+c+d)?

Equality occurs if and only ifa=b=c=d = 1 O

or



4 On Dopovicin's inequality




Chapter 5

Inequalities involving
EV-Theorem

The Equal Variable Theorem (called also n — 1 Equal Variable Theorem on
the Mathlinks Site - Inequalities Forum) is a powerful instrument to solving
some difficult symmetric inequalities. First we will present the theoretical
base of the method, then we will solve some inequalities, hardly attackable
by other ways

5.1 Statement of results

In order to state and prove the Equal Variable Theorem (EV-Theorem) we
will use the below Lemma and Proposition

Lemma Let a,b,c be given non-negative real numbers, not all equal and at
most one equal to zero, and let x < y < z be non-negative real numbers such
that

z+y+z=a+b+c, 2P+yF+ 2P =af + b 4 P,

where p € (—o0,0]U(1,00). Forp =0, the second equation is xyz = abe > 0
Then, there exist two non-negative real numbers 1 and x9, T, < T3, such
that = € [z, x2]
Moreover,

1)ife=z) and p <0, then0< 2 <y =z,

) fr=xzyandp> 1, theneither 0=z <y<zor0<z <y =z,

3) ifx € (x),z2), thenz <y < z;

4) of z =x9, thenz =y < 2

209
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A proof of Lemma is given in 8, 9]

Proposition Let a,b,c be given non-negative real numbers, not all equal
and at most one equal to zero, and let 0 < z < y < z such that

z4+y+z=a+b+ec, 2P+yP+2P=aP+0 +F,

where p € (—o0,0]U(1,00). Forp =0, the second equation is xyz = abc > 0.
Let f(u) be a differentiable function on (0,00), such that g(z) = f’ (m?l—l)

is sirictly convex on (0,00), and let

Fs(z,y,2) = f(z) + f(y) + f(z)

1) If p <0, then F3 is mazimal only for 0 < z =y < 2z, and is minimal
only forO0< z <y =z

2) If p > 1 and either f(u) is continuous at u = 0 or l% f(u) = —o0,
then F3 is mazximal only for 0 < z = y < z, and is minimal only for either
r=0orl0<z<y=2.

Proof On the assumption z < y < 2, from the relations y+ 2z =a+b+c—=z
and yP + zP = aP + bP + ¢? — P we may express y and z in terms of z for
x € [z1,x2]. We claim that the function

F(z) = f(z) + f(y(z)) + f(2(=))

is minimal for £ = z; and is maximal for x = z3. If this assertion is true,
then by Lemma it follows that

a) F{z) 15 minimal for 0 < 2 =y < =z — when p < 0, or for either z = 0
orO0<r<y=2z-whenp>l;

b) F(z) is maximal for 0 < r =y < z.
In order to prove the claim above, assume that = € (z;,z2) By Lemma, we
have 0 <z < y < z From

r+y(z)+z(z)=a+b+c and zP+yP(x)+ 2P(x) =aP + VP + P,

we get

,yl _I_zl — _1’ ,yp—lyl + zp—lzl — _“-Tp—l’

hence ) )
, :L-P"‘l — zp—l ; P~ — yp_

- —ee——— 2 = —e——
Y 2P=1 —qyp—17 yp~1 — zp—1
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It is easy to check that this result is also valid for p = 0. We have

Fl(z) = f'(2)+ ¥ f'(y) + 2 f'(2)

and
F'(z) g(zF1)
(2P~ — yp=T)(zp—T = zp-1 (2Pt = yP=1) (2P~ — Z”_l)+
N g(y* ) g(="1)

(yP=t — 271 (yp~t —ap=l) (2Pt - gpl(zpml — -l
Since g is strictly convex, the right hand side is positive. On the other hand,
(P71 —yP (2P = 2Py 5 0

Consequently, F'(z) > 0 and F(z) is strictly increasing for z € (z1,z2)
Excepting the trivial case when p > 1, ; = 0 and 1ll_r‘r%)f(u) = —o0, the
function F(z) is continuous on [zy, z2], and hence is minimal only for z = z,,
and is maximal only for z = z,. O

Equal Variable Theorem (EV-Theorem). Let ay,as,...,a, (n > 3) be
gien non-negative real numbers, and let 0 < 1 < 29 < --- < z,, such that

Tyt T2+ +Zn=artast - tan, gi+ b4+ =al o+ 4P,

where p is a real number, p # 1  For p = 0, the second equation is
L1y Zn = a182. .an > 0. Let f(u) be a differentiable function on (0,00),
such that

g(z) = f (a:”—i"”)

is strictly convex on (0,00), and let

Fn(x1,$2:---:zn) = f(-'El) +f(:":2) + - +f(x'"-)

1) If p <0, then F, is mazimal for 0 < 2, = Ty = =z, < g,
and is minimal for 0 < 2y < 29 = 75 = =z,

2) If p > 0 and either f(u) is continuous at u = 0 or lim f(u) = —o0,
then Fy, is mazimal for 0 < Ty =Ty = - =z, < 1y, anl;i_'z'(.)s minimal for

ry = - .=xk=0and$k+2_—_...—_—_fgm WherekE{O,l,...,n—l},
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Proof We will consider two cases

Cuase p € (—o00,0]U(1,00). Excepting the trivial case whenp > 1,2, =0
and liﬂbf(u) = —oo, the function Fy(z,,z3, . ,z,) attains its minimum
and maximum values, and the conclusion follows from Proposition above,
using the contradiction way For example, let us consider the case p < 0.
In order to prove that Fj is maximal for 0 < z; = x5 = = zn1 L Zp,
we assume, for the sake of contradiction, that Fj, attains its maximum at
(by,ba, ,bn) with b < by < < b, and b, < b,_; Let zy,z,_,,2, be
positive numbers such that z1 4z, _1+2zn = by+bp_1+b, and 2l +28 _ +2Ff =
by + b2 _, + b2. According to Proposition, the expression

FB(-Tl,-'En—l,-Tn) = f(xl) + f(x'n—l) + f(xn)

is maximal only for z; = z,_; < x,, which contradicts our assumption that
F, attains its maximum at (by, by, .,b,) with b < b,_;.

Case p € (0,1) This case reduces to the case p > 1, replacing each of a;
1 L 1
by a], cach of z; by z7, then p by ; Thus, we get the sufficient condition

that h(z) = zf’ (a:l—l_z’) to be strictly convex on (0,00) We claim that this

1 :
condition 1s equivalent to the condition that g(z) = [ (r P—l) to be strictly

convex on (0,00) Actually, for our proof, it suffices to show that if g(z) is
strictly convex on (0,00), then h(z) 1s strictly convex on (0,00). To show

1 1
this, we sce that g(—) = —h(x) Since g(z) is strictly convex on (0,00}, by
2 T

Jensen’s Inequality we have

R
+
@ | <

S
P
8|
———’

+

<

Q

TN
Q2 |
SN
Vv
=
=

o
2
-+
<

for any positive z,y,u,v with = # y This mequality is equivalent to

N,

<

L hiz) + 2 h(y) > (3+3)h ut
z y z 'y

Bwilg
+
@ | @
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For u = ta and v = (1 — t)y, where ¢t € (0, 1), this inequality reduces to
th(z) + (1 - Oh(y) > h(iz + (1 - 1)),
which show us that, h(x) is strictly convex on (0, 00). O

Remark Let 0 <a<fB The EV-Theorem holds true when z,,z2, . ,zp €
(a,B), the function f is differentiable on (a,f) and the function g(z) =
f’(a:ﬁ) is strictly convex on (a1, 37~} - for p > 1, or (BP~!,a?" 1) - for

p<l1
By EV-Theorem, we easily obtain some particular results, which are
usefu] in applications

Corollary 1. Letaj,aq, ..,a, (n > 3) be given non-negative numbers, and
let0<zy <x9< - <z such that

Ti+Z2a+  FTn=0er+art - tan, 2i4ri+ otz =altad4 +al

Let [ be a differentiable function on (0,00), such that g(z) = f'(z) is
strictly convex on (0,00). Moreover, either f(z) is continuous at x = 0
or lmbf(a:) = —o0. Then,

z—

Fo=f(z) + f(z2) + -+ fzn)

i mazimal for 0 < zy = 29 = -+ = z,; < x,, and is minimal for
zy=--=zf=0and tryo= - =z, whereke {0,1,. .,n—1}
Corollary 2. Let aj, a3, ,an, (n > 3) be given positive numbers, and let

O<zy <25 < < z, such that

1 1 1 1 1 1
Tit+za+ +Zp=a1ta+  tep, —t+—+ A —=—+—+ +—.
r; xg Zn ay ap On

1
Let f be a differentiable function on (0,00) such that g(x) = fl(ﬁ) 18

strictly convez on (0,00). Then, F,= f(x Hf(zoH - +f(z,) ts maximal for
O<zy=x9=-- =z,_1<2,, and is minimal forO<oy<zg=29=- «=1x,.

Corollary 3. Let a1,as, . ,a, (n > 3) be given positive numbers, and let
O<zy <29 <+ - < x,, such that

nitZt+ cFfan=a1+ax+- -4 an, T122.. T, = ajay ..a,.
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1
Let f be a differentiable function on (0,00) such that g(x) = f’(—) is strictly
z

convex on (0,00). Then, F, = f(z;)+ f(z2)+ - + f(zn) is mazimal for
O<zy=29=+- =x,-1<Z,, and is minimal for 0<z;<z9=7T3= - - =1I,.

Corollary 4. Let a1,a2, .,a, (r 2 3) be given non-negative numbers, and
let0 <z <29 <+-- <z, such that

ri+22t +Th=ar+ ezt A an, B Hoh+ - $2h =al+af 4+ +ab,

where p is a real number, p #0, p# 1.
a) For p< 0, P =z,z5. .z, is minimal when

O0<zy=20="---=2n_1 < Zp,
and is maximal when
O<y<z9g=123=- - =1zy
b) For p> 0, P =x29 ...z, is mazimal when
0<ry=29=  =zpn_1 L Zp,
and is minimal when either
r1=0 o0r 0<z1 <z =23= - =24

Proof. Apply EV-Theorem to the function f(u) = plnu. We see that
lir% f(u) = —oo for p> 0, and

1 pg 2p-1

F=2, o@) = £ (577) =75, ()= e

Since ¢”’(z) > 0 for z > 0, the function g(z) is strictly convex on (0,00), and
the conclusion follows by EV-Theorem. |

Corollary 5. Let ay,02,. ,an (n > 3) be given non-negative numbers, and
let0< zy <x29< - <z, such that

T14+Zo+ - +Tn=a1+024- +an, ri4+zb+o+zh=al+eb+ el

1. Case p< 0 (p=0 yields 1775 z,=a1a2 a,>0)
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a) For ¢ € (p,0)U (1,00), E = z¥ + 2% + -+ 4+ 2% is mazimal when

O<zy=129= =z, 1<z,, and is minimal when 0< x| <xo=23=. =2x,.
b) For q € (—o0,p) U(0,1), E = z¥ 4 2% + ... + 29 is minimal when
O<zr1=29= .=2x,_,<2,, and is mazimal when 0<z1 < xo=23=.. =2x,.

2. CaseO<p<1-
a) For g € (0,p)U(1,00), E = z¥ + 2§ + --- + 2% is mazimal when

02y =29 =-- = 1 < x,,, and is minimal when either x; = 0 or
O<zy <2 =23=---=1x,.

b) For g € (—00,0)U (p,1), E = z¥ + 28 + -+ + 2% is minimal when
0<z1 =29 =+ =21 £ z,, and is mazimal when z1 = --- =z, = 0
and Tp4o =+ =z, where k€ {0,1,. .,n—1}.

3 Casep>1

a) For g € (0,1)U (p,o0), E = z7 + zd + -+ 2% is mazimal when
0<zy=20=" =12, < z,, and s minimal when z,'=- =12, =0
and Ty g = - = x,, where k € {0,1,. .,n—1}.

b) For g € (—00,0)U(1,p), E = z{ + 2% + -+ + 2% is minimal when
0Lz =290 =+ =241 € 2, and is mazimal when z; = - - =z, = 0
and Ty, =+ = x,, where k € {0,1, ..,n— 1},

Proof. We will apply EV-Theorem to the function
f(u) = a(g = 1)(g — p)ut.

For p > 0, it is easy to check that either f(u) is continuous at u = 0 (in the
case g > 0) or lir%f(u) = —oo0 (in the case ¢ < 0). We have
Ut

f'(u) = (g - 1)(g — pyut™!

and
9(z)=f ('ﬂf‘ = ¢*(¢~ 1)(g — p)a>T,
" 2 —1V2(g — 02 2p-1
¢(z)= T p—E(;? p)” 2=l

Since ¢"(z) > 0 for x > 0, the function g(z) is strictly convex on (0, 00), and
the conclusion follows by EV-Theorem. O
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Corollary 6. Let aj,as,...,a, (n > 3) be given non-negative numbers, let
pe {1,2} and let 0 < 2y <z <+ <z, such that

i+t +xpn=01+0a2+- +ap,

i +oh+ - fzh=al+ab+ - +af
The expression E=Z T1Zoxq 18 mazimal when 0<zi=29= =z,_,<x,,

and is minimal when x; = -+ = 2 = 0 and g4 = = x,, where
ke {0,1, ,n-1}

Proof Taking into account the known relation
63X w10z = (D)~ 3 (D) (T f) +25 4,

the statement follows by Corollary 5 (case p = 2 and ¢ = 3, or p = 3 and
qg=2) 0

Corollary 7. Let ay,as,...,a, (n > 3) by given non-negative numbers, and
let0< 2y <x9 < - < xy such that

2 2
x%.{.x%.{_ . +$n—a1+a%+ ..+a$“
3
x?+x§+. -+I§!_a?_+ ag+...+an

The expression E=Zx1r2:z:3 is mazimal when 0<z,=20=...=x,-1<zZq,
and is mimimal when r; = =z = 0 and 149 = --+ = z,, where
ke{0,1, ,n-1}.

Proof. According to the relation

Glexzxs = (Z-’El)s -3 (le) (fo) + 22-’”?,

the sum ZI1I2$3 is maximal (minimal) when Z 21 is maximal (minimal)

1
Consequently, the statement follows by Corollary 5 (case p = 3 and ¢ = 5 ),
replacing z1,z2, ,z, with 22 22,..., 22, respectively O
5.2 Applications
1. If z,y, z are non-negative real numbers, then
1
iy + z)+y4(z F x) +z4(x-+ y) < ﬁ(x+y+:)5.

(Vasile Cirtoaje, MS, 2005)
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2. If z,y, z are non-negative real numbers such that zy + yz + zz = 1, then
T+y+:+3(2V3-3)zyz>2

3. If z,y, = are non-negative real numbers such that ab + bc + ca = 1, then
1 + 1 + 1 1 > 9

a+b b+c c+a a+b+c—

(Vasile Cirtoaje, MS, 2005)

4. Let z,y, z,t be non-negative real numbers such that z +y + 2 + ¢ = 3.

Prove that

$2y222 +y2::2t2 + 22123:2 + t2$2y2 <1.

5. Let x,y,z,t be non-negative real numbers such that z + y + 2+t = 4
Prove that

Yz + yzt + zlx + txy -+ $2y222 + y222t2 + z%t%2? + t2x2y2 <8
(Phan Tharh Nam, Diendantoanhoc Forum, Vietnam)

6. Let x,y, z be non-negative real numbers such that zy+yz+zx =3 Then

T+ \/l+2y \/1-{—22
>3,
\/ 3tV T3 ty—3 2

( Vasile Cirtoaje, MS, 2006)

7. Let z,y, z be non-negative real numbers, no two of which are zero Then

1 1 1 9
+ >
(c+y? " (y+22  (et+o)2 = Azy+yz+ zz)
(Iran, 1996)

8. Let z,y,z be non-negative real numbers, no two of which are zero. If

)
OST‘S§,then

1 3(1+7)
Z 2 22 2 2 2 .
v +yz+z2 244+ y* + 2° + r(zy + yz + 2z)

8
9. Let 2, y, z be non-negative real numbers such that r+y+2=3. lfr > 5

then -
1 1 1 3

+ <
R Ry e g B
{ Vasile Cirtoaje, MS, 2006)
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10. Let z,y, z be non-negative numbers such that 2 +3%+4 2% = 3. Ifr > 10,

then
1 1 1 3

< .
r—(z+y)? T r—(y +2)2 T r—(z+z)2 " r—4
{ Vasile Cirtoaje, MS, 2006)

11. If x,y, z are non-negative real numbers, then

yz 1 ZT + Iy
3 +y? +22 7 By + 2242 3224 x4 y?

3
< -.
5
{Vasile Cirtoaje and Pham Kim Hung, MS, 2005)

12. Let z,y, z be non-negative real numbers such that r 4+ y + 2 = 2. Prove

that
Yz zT Ty

<
241 Pl B
(Pham Kim Hung, MS, 2005)

1

13. Let z,y, z be non-negative real numbers such that z +y + z = 2. If
In2

T‘oSTS3,WhereT0=m

~ 1.71, then

g (y+2)+y(z+x)+2"(x+y)<2

14. Let z,y, z be non-negative real numbers such that zy +yz+ 22 =3 If
1 <r <2, then

2 (y+2)+y(2+2)+ 2 (z+y) 26

(Walther Janous and Vasile Cirtoaje, CM, 5, 2003)

15. If 21,25, .,T, are positive numbers such that
1 1 1
ATt A I = — =+ —,
ry I o
then
! + ! + + 1 >1
1+(n—-1Dz; 14 (n—1)x2 1+ (n—Dz, =

(Vasile Cirtoaje, A M M, 1996)
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16. If a,b, c are positive real numbers such that abc = 1, then
1
a3+b3+c3+1526(1+1+—)
a b ¢
(Michael Rozenberg, MS, 2006)

17. Let ay,a2, .,a, be positive real numbers such that aja;  a, = 1.
If m is a positive integer satisfying m > n — 1, then

1 1 1
a{”+a’2“+---+a;"+(m—1)n2m(——+——+ -+——).
ai an Gn

( Vasile Cirtoaje, MS, 2006)

18. Let z;,29, . ,x, be non-negative numbers such that z;+23+. z,=n
k-1
n
If £ is a positive integer satisfying2 <k <n+2,and r = ( 1) -1,
n —
then

:t:f+:z:’2‘+- +xﬁ —n>2nr(l —zi20...2,)
( Vasile Cirtoaje, MS, 2005)

1 1 1
19. Let z1,x2, . ,z, be positive numbers such that —4+ — 4 - 4+ —~=n
Th r T2 Iy
en

) +2z2+ - '+.'En—n£€n_1(.’51$2 --Tn_l):

1 n-1
where e,,_; = (1 + ) < e
n—1
(Gabrel Dospinescu and Cdlin Popa, MS, 2004)

20. Let ry,x3,.. ,z, be non-negative numbers such that z;4z2+ Az, =n.
k-1
n -1

If K > 3 is a positive integer and r = , then

n—1
Kook ok 2, .2 2
zy + x5 + + z, ngr(:.':1+xz+- -+1:n—n).
(Vasile Cirtoaje, MS, 2006)
21. If zy,x9,...,2, are positive numbers, then
i+ 23+ zh 4 n(n— Dayzg. . 2, >

1 1
2 x1Z2. -In(ﬂf1+$2+---+$n)($—+x—2+-- +I—1-)
i n

( Vasile Cirtoaje, MS, 2004
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22. If 2y,29,...,z, are non-negative numbers, then

(n—1) (2] +2] +- -+20) + 212z .0 2

> (e1 422+ - +2za) (217 H 2T 4237
(Janos Suranyi, MSC-Hungary)
23. If z;,22, . ,z, are non-negative numbers, then
(n—1) ($?+1 + a4 ,__+$2+1) >
>(z1+ 2o+ Fza)(@T +23 + -+ —z1T2 . Za).
(Vasile Cirtoaje, MS, 2006)

24. If zy,z2, ..,z, are positive numbers, then

1 1 1 1
(zi+z2+-- +2,—n) (—+—+ +— —n)+m1xz Tt 22.
Iy I Iy IZge...Ty

(Vasile Cirtoaje, MS, 2004)

25. If zy,29, ,x, are positive numbers such that zyzs =z, =1, then

(Vasile Cirtoaje, GM-A, 3, 2004)

26. If z,, xq, . .., z, are non-negative numbers such that z;+x2+ - -4z, = n,
then

1
(x1z9...2p) V"1 (x%+z%+ : +.'B,21)§n

(Vasile Cirtoaje, MS, 2006)

27. Let z,y, z be non-negative numbers such that zy + yz + zx = 3, and let
In9 —1In4

> ————— =~ 0.738 Then,
P= "3 en

P + yP + 2P 2 3.

(Vasile Cirtoaje, CM, No 1, 2004)
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28. Let z,y,z be non-negative numbers such that z + vy + 2 = 3, and let

in%9—1In8

> ———— =029 Then,

P= in3—1n2 o
2+ P+ 2P > rydyz t o2z
(Vasile Cirtoaje, MS, 2005)
29, lf z;,2z9,...,2, (n > 4) are non-negative numbers such that
ry+z2 4+ +Ta=mn,
then
1 1 1

<1

n+l—xoz3 .z, + n+l—x3zy. 2 +'n+1—:r:1:r2 - |

(Vasile Cirtoaje, MS, 2004)

30. Let a,b,c be positive numbers such that abc = 1. Prove that
1 N 1 4 1 N 2 > 1
(I+a)? (1487  (1+¢)?  (1+a)(1+b)(1+¢c) =

31. Let a,b,c be non-negative numbers such that a + b + ¢ > 2 and
ab+bct+ca>1 If 0<r<1,then

a" + b+ > 2.
(Vasile Cirtoaje, MS, 2006)

32. Let a,b, c be positive numbers such that (a + b + c)® = 32abe. Find the
minimum and the maximum of
~ (a+b+e)d
(Tran Nam Dung, Vietnam, 2004)

33. Let 21,72, .,zp (n > 3) be non-negative real numbers such that

Zﬂ’:l =1.

[fme{3,4,. ,n}, then

( Vasile Cirtoage, MS, 2006)
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34. Let z,y, 2,t be non-negative real numbers such that
P+ 22+ =1
Prove that
x3+y3+23 +t3+xyz+yzt+zta:+t:ry5 1.

(Vasile Cirtoaje and Pham Kim Hung, MS, 2006)

5.3 Solutions

1. If z,y, z are non-negative real numbers, then
1

»\9
5 (T +y+2)”.

ly+ )+ (e +2)+ 2z +y) <

Proof. Rewrite the inequality as

1
24974 2+ (et y+ 2 2yt +y' 420,

and apply Corollary 5 (case p =4 and q = 5):
e If0 <z <y< 2 such that

T +y+ z = constant and z* + y* + z? = constant,

then the sum z° + y° + 2° is minimal when eitherx =0 or0<z <y =12
Case z = 0. The inequality becomes

(v + 2)(¥: —4yz+ 22)2 >0
Case 0 < £ <y = 2z The inequality reduces to
(z+2y)° —24z'y — 24y (z + ) > 0
Since (z + 2y)° > (2y)3(z + 2y)?, it is enough to show that
y¥(z +2y)? — 3z - 3P (z + ) 2 0.
Indeed, we have
vz + )2 — 32t — 3z +y) =t — 2t + 2P — %) + 22 (P — D) 2 0

For z < y < z, one has equality when (2,7, 2) ~ (0,3 — /3,3 4 V3). d
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*
2. If x,y, 2z are non-negative real numbers such that xy + yz + 22 = 1, then
z+y+z+3(2\/§—3)myz > 2.
Proof We write the hypothesis in the form
(z+y+2)?=2+22+1%+ 2%

the apply Corollary 4 (case p = 2)
e If 0 <z < y< z such that

T +y+ z = constant and z°+ y* + 2% = constant,

then the product zyz is minimal when eitherz =0 or0< z <y = z.

Case z = 0. We must show that yz = 1 implies y + 2 2—2; this immedi-
ately follows from y + z > 2, /yz.

Case 0 < x € y == z The hypothesis zy + yz + 2z = 1 reduces to
2zy = (1 — y)(1 +y), and the inequality becomes successively:

a:+2y—|—3(2\/§—3):ry222,

dzy
$+3(2\/§—3)$y22—1—+—y,
14+3(2V/3-3)y2> Y
+ (\/§ 3)y 21+y’

1-3y+3(2v3-3)y* +3(2v3-3)3° > 0,
(1-v3)" [1+ (2v3-3)y] > 0.

The last inequality is clearly true. For z < y < z, we have equality when

either (z,y,z) = (%,%, %) or (z,y,2) = (0,1,1). O

*

3. If z,y,2 are non-negative real numbers such that ab + bc + ca = 1, then

1 1 1 1
- — >
a+b_{b+c+c+a a-i-b-i—c_2
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Proof. Let b+ ¢ =22, c+a =2y and a + b = 2z. We have to prove that

{)
_1.+l+l._____"____>_4
z y =z zH+y+-=z

?

for 2(z? + 2 + 2%) + 1 = (z + y + 2)®* To do it, we will apply Corollary 5
(case p = 2 and g = —1).
e If 0 <z <y<z such that

z +y+ z = constant and z2 + y° + 2% = constant,

1 1 1
then the expression —+ — + — is minimal when 0 <z =y < 2
T Yy =z
The case 0 < 2 = y < z is equivalent to ¢ = b > ¢ The hypothesis

1—a?
2a

1 N 1 N 1 1 1 2 1
a+b b+c ct+a at+b+c

:(L_ 1 )_2(1_ 1)2 1-d®  2(l-a)®
2¢ 2a+c a+c 2a(1 + 3a?) 1+ a?
(1—-a)(1—-3a+ 502 —11e% + 1204

2a(1 + 3a?)(1 + a?)

condition ab + bc+ ca = 1 reduces to ¢ =

,0<a<1 Wehave

2a+a+c_2a+c*

Since 1 — a > 0, we need to show that
1—3a+5a%—11a® + 124* > 0.

Indeed, we get

2 3 4 3a\? 2 (1 S
1 —3a+ 5a% — 1143 + 120 :(1—7) 4 1la (;—a) +at>0
For a > b > c, one has equality if and only if (a,b,¢) = (1,1,0). d
*

4, Let z,y,z,t be non-negative real numbers such that x4+ y+ 2+t = 3.
Prove that

x2y222 +y2z2t2 + z2t2:c2 + t29:2y2 <1.
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Proof Without loss of generality, we may assume that z < y < z <t For
x =0, the inequality becomes 3?2%t2 < 1, withy+ 2+t =3 From AM-GM
Inequality ,
z+1
yzl < (y_-i_;) ,
3
we get yzt < 1, and hence y?2%t2 < 1.
For > Q, rewrite the inequality in the form
1 1 1 1
2
(zyzt) (F+§§+z_2+t_2) <1,
and apply Corollary 5 (case p =0 and ¢ = —2):
e lf0<z<y<z<tsuchthatz+y+z+1t=3 and zyzt = constant,
1 1 1 1
then the exrpression S+t —=t+to5+z is mazimal when 0 <z <y=2=1
T Y z t
For0<z<y=z=t fromz4+y+z2+t=3 wegetO<y=2=1t<1
and z = 3(1 — y)
The inequality reduce to
3a2yt 4 yf < 1.

By AM-GM Inequality, we get

3y 3y
x3y 3_y :L'—I-—Q“-I-? .
22 3 o

4 4
hence zy? < 3 Thus, it suffices to show that §xy2 + 4% < 1. Indeed, we

have

4
L=y’ - pay’ =1-3f —4(1-y)’ =

It

-1 +y-3 2+ + v +4%) >
>(1-y)(1+y-3° +3") =
-9 [(1-9*?+y(1-y)] >0

Equality occurs when (z,y,2,t) = (0,1,1, 1) O

Remark This application solves the problem posted by Cabriel Dospinescu
on Mathlinks Site-Inequalities Forum, in June 2005:
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e If x,y,z,t are non-negative numbers such that x +y+ 2z + t = 4, what
is the mazimum value of z2y222 + 22212 + 221222 4 1222927

. (n° . . 44 4
The maximum value is (5) , and is attained for (z,v,2,1) = (O )

'3'3°3
To obtain this result we have to replace z,y, 2,t in the above inequality by
3z 3y 3z 3t civel
'I, T, 'Z, Z, respectively
*

5. Let z,y,2,t be non-negative real numbers such that x+ y+ 2+t =4
Prove that

2yz + yat + 2tz 4+ tzy + 27y%2% 4 2% 4 222 4 122y® < 8

Proof Assume that 2 < y €< 2 <t For £ = 0, the inequality reduces to
yzt + y22%t? < 8, with y + 2+t = 4 From AM-GM Inequality

2Tyzt < (y+ 2z + t)3,

64
we get yzt < —, then

- 27
yat FyP2?t? gzt 8 ( 64) 728
LA I S i < — =<1
8 g vl s \Ihgr) =g <

For z > 0, rewrite the inequality in the form

1 1 1 1 2222(1 1 1 1)
2l-+-+-+ - *t|l==+=+—=+ =) <8,
myt(x+y+z+t)+:8y m2+y2+32+t2 <

and apply Corollary 5 (case p =0 and ¢ < 0):
e fO0<z<y<2<tsuchthatz+y+ =+ t=4 and zyzt = constant,

1 1 1 1 1 1 1
then the sums —+ —+ -+ — and —+ —+ —= + -5 are mazimal when
r y z t 22 y? o 22t

O<ae<y=z=t

4
For0<z<y=2=1, fromx+y+z+t:4,weget1§y=::t<§
and z = 4 — 3. The inequality reduces to

3zt2 + 13 + 322t* + 16 < 8,
4(7t8 — 1825 + 1211 — 243 + 32 - 2) <0,
4t3(t — 1)2E(t) <0,
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4 3 4 2 o .
where E(t) = 7—-'{—t—2_t—3—t—4 Slnce E(t) < E(g) = m, the las

inequality is clearly true Equality occurs when (z,y,2,t) =(1,1,1,1). O
*

6. Let z,y, z be non-negative real numbers such that xy+yz+ 22 = 3. Then

142z 142y 1422
>3
\/ 3 tV 3 tTYy 3 =2

Proof. We write the condition zy + vz + 2z = 3 in the form
(z4+ v+ 22 =6+2%+¢% + 22,

14 2u
3

and then apply Corollary 1 to the function f(u) = ,u >0 We

1
have ¢(z) = f'(#) = ———— and [rom
ve g(z) = f'(x) T 20)

g"(z) = V3(1 +22)% >0,

it follows that g(z) is strictly convex for £ > 0. According to Corollary 1, if
0<z<y<zsuchthat x4 y+ z = constant and z2 + y* + 22 = constant,

then the sum
1422 \/1+2y \/1+2z
\/ 3 V73 TV 3

is minimal when eitherc =0 0r0 <2<y = 2.
Case x = 0. We have to show that

VI+2y4+vV14+22>3/3—-1 for yz =3

By squaring, the inequality becomes
Y+ 2+ 134+ 2(y + 2) > 13- 33,

Indeed, we have y + z > 2,/5Z = 2v/3, and therefore

Y+ 2+ 18+ 2(y+2) 223+ V13 + 4v3 > 13 - 3V3,
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Case 0 < 2 <y=2 FPomzy+4yz+z2x =3, wegetz = ,

0 <y < V3 The inequality becomes

— 2
1+3 Y ro/T+2y>3/3

y

[1+2 1 [1+2/3 5
Let us denote t = —Ty, 7 <t< T\/_< i The inequality

transforms into

3+ 412 — 34
2(3t2 — 1)
By squaring and dividing by 3, the inequality becomes

>3 —2t

7 — 8t — 1412 4 2413 — 94 > 0,

or, equivalently,
(1-t)2(7+6t—-9t) >0

This inequality is true, because

.::-|;

7+ 6t— 0i% =8 — (3t — 1)? >8—(
Equality occurs if and only if (z,y,z) = (1,1,1). d
*

7. Let z,y,z be non-negative real numbers, no two of which are zero Then
1 1 1 9
G+u?  wreF Grer daytuata)
Proof. Due to homogeneity, we may consider that z + y + z = 1. On this
assumption, the inequality becomes
1 1 1 9
-2 "=y T U= " 2= 0@ + 2 + )

1
To prove it, we will apply Corollary 1 to the function f(u) = —(1 L

2
0<u<1 Wehave g(z) = f'(z) = and from

(1-2)
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it follows that the function g(x) is strictly convex for 0 < z < 1. According
to Corollary 1 and Remark fiom section 5.1, if 0< xr < y < 2z such that
z+y+z=1and 2% + y® + 2% = constant, then the sum

1 1 1
(=2 (T=ge T T2

15 minimal when eitherx =0 or0 <z <y =12
Case £ =0 The original inequality becomes
1 1 1 9
i T Tl S
e (v + 2)? TR

. (v — 2)%(49* + Tyz + 422) >0
y?22(y + z)? -
Case 0 < x <y = 2. The original inequality becomes
2 1 9
Gty 477 4(2zy + y2)’
or
z(z - y)*

293z + )2 (2z +y)
Equality occurs for (z,y,2) ~ (1,1,1), as well as for (x,y,z) ~ (0,1,1) or
any cyclic permutation O

*

8. Let r,y,z be non-negative real numbers, no two of which are zero. If

3
OgrSE,then

Z 1 3(1+r)

>
Vtyz+22 T 22+ y? + 2 4 r(zy + vz + 22)
Proof. Due to homogeneity, we may consider z + y+ z = 3 Let

9+ atyyt g SR
- - _

P

Since
1 1

20 +yz+2%)  (z+y+2)?+2i i+ 22— 22(z +y + 2)
1

6(p—x)’
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the inequality becomes

1+1+12 3(1+7)

p—z p—y p—z 2p—-3+r(3-p)’

To prove the inequality, we will apply Corollary 1 to the function

1
= —— 0< :
f(u) p_u,O_u<p

1 6

We have g(z)=f'(z)=———5 and ¢’(2) = ——=> 0
7 (p-x)? (p— )4
Therefore, g(x) is strictly convex for 0 < 2 < p According to Corollary 1
and Remark from the section 51, if 0<z<y<zsuchthatzt+y+z=3
end 2° + y® + 2% = constant, then the sum
1 1 1
+ +
p—r p-y p—=2

is minimal when eitherz =0 or0 <z <y =2
Case £ =0 The original inequality becomes

1 1 1 3(1+r)
=2t 3+ 3 22 2 2 ,
Yy Z vy t+yz4 2 yc+ zc +ryz
o I 3(1+47)
+r
>
s+s+1_ s+r

z
where s = Y + —, s > 2. Write this inequality as
z Y

S 452 =25 —34r(s?—25—-2)>0.

(SR

Since s2 — 25 —2 = (s — 2)% + 2(s — 1) > 0, it suffices to consider r =
In this case, the inequality becomes (s — 2)(2s? + 115 + 8) > 0.
Case 0 < £ < y = z The original inequality becomes
2 N LS 3(1+7)
2ty +y? 3y T 22+ 22 4 r(2zy 4+ 92

Since the inequality is homogeneous, we may consider z < y = 1. On this
assumption, the inequality is equivalent to

BTz 4+5+2(z—-1°>0,
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or
(z —1)? [a:2+3:1:+5+2r(a:—1)] > 0.

Since
2+ 3z + 5+ 2r(z—1) = 2? + 8z + (5—2r)(1—2) > 0,

the proof is completed.

5
Equality occurs for (z,y, z) ~ (1,1,1). In the particular case r = 3 equality
holds again for (z,y,2) ~ (0,1, 1) or any cyclic permutation.
Remark. For r = 2, we get the known inequality
Z 1 S 9
yityz+22 T (zty+2)?
a
*

8

9. Let z,y, z be non-negative real numbers such thatz+y+2=3. Ifr > =

th
€n 1 1 1 3

<
r+x2+y2+r+y2+22+r+z2+x2 —r42
Proof. Let p=r + z? 4+ y? + 22. We have show that
1 1 1 3
<
= py Tp- 272

forz+y+2=3and 22 +y?+ 22 = p—r To prove this, we will apply

Corollary 1 to the function f(u) =

0<u<,/p. We have

p—u?’
, 2x
9(z) = f'(z) = =27
and : 2)
wy y_ 24z(p+zx
=

Since ¢’(x) > 0 for z > 0, the function g(x) is strictly convex for 0 < z < N2
According to Corollary 1, if 0 < z <y < 2 such that t+ y+ z = 3 and
x? + y% + 2% = constant, then the sum
1 + 1 1
p—z? p-y? p-—2°
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is mazimal when 0 < £ =y < 2 Therefore, it suffices to consider only the
case z =y We have to show that for 2z + z = 3 the inequality holds
1 2 3
+ <
r+222  r+ x4z T r 42

Write the inequality as follows
1 ; 2 < 3 ,
r+2z2  r+9-12r+5x2 " r+2
521 —122% 4+ (2r + 6)2? —4(r — D)z +2r -3 >0,

(z—1)%(52° -2z +2r —3)>0

Since
) V2 8
5z —2m+2r—3=5(x—5) +2(r—g) >0,
the last mequality is clearly true. Equality occurs for (z,y,2) = (1,1,1)
1113
In the case r = 5 equality occurs again for (z,y,2) = (g,g,?) or any
cyclic permutation O

*

10. Let z,y, 2z be non-negative numbers such that x® +y?+ 2% = 3. Ifr > 10,

then. ) ] { 5

< .
r—(z+y)2+r—(y+z)2+r—(z+:c)2 —r—4
Proof Let s =z +y+ 2z We have to show that

1 1 n 1 < 3
r—(s—z)2 r—(s—y)? r—(s—2)* " r—4

fort+y+ 2 — s and 22 4+ y? + 22 = 3. Apply Corollary 1 to the function
—1 2(s — x)

= ——————for0<u<s. Weh = fi(z) =

f(u) R P— or 0 < u < s. We have g(z) = f'(z) (s 2

and
' 24(s — z) [r +(s—:c)2]

[r—(s— =)
Since ¢"(z) > 0 for 0 < z < s, the function g(x) is strictly convex for
0 <z <s According to Corollary 1, if 0 < z < y < z such that

g”(l') —

T+ y + 2z = constant and x*4 y? + 2% =3,
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then the sum
-1 N —1 N -1
—(s—2)? r—(s-y)? r—(s—2)*
is munimal for either x = 0 or 0 < £ < y = z. Therefore, it suffices to
consider only thecasesz =0 and O < s <y =2
Case z = 0. We have to show that y? 4+ 22 = 3 implies
1 1 1 3
<
r—uy? +r—22 r—(y+2)?2 " r-1

Since
1 1 2r—3 < 2r—3

r—y? troe T r?2 — 3r4y222 ~ r(r—3)
and (y + 2)% < 2(3? + %) = 6, it suffices to prove that
2r -3 N 1 < 3 -
r(r—3) r—6"r—4d
This inequality reduces to
2 _ 2
3(rc —12r 4 24) >0,
r(r —3)(r — 4)(r — 6)
and it is true because r? — 12r + 24 = (r — 2)(r — 10) + 4 > 0.
Case 0 < z <y = z. Write the inequality in the homogeneous form
Z 1 < 3
r(@?+y? +22) =3y +2)? T (r—4) (a2 +y2 + 22)
Since y = 2z > 0, we may consider y = z = 1 Setting t = r(z? + 2),
t > 2r > 20, the inequality becomes

1 N 2 < 3
t—12 t—-322—6x—3 " t—4x2— 8’

or
6(x — 1)%(t — 222 — 8z —
(x — 1)%(¢t — 222 — 8x — 18) >0

(¢ —12)(t — 322 — 62— 3)(t — 422 — 8) =
The last inequality is true because

t—2:52—8:r—18=r(:1:2+2)—2.n2—8:1:—182
> 10(z® + 2) — 22° — 8z — 18 = 2(2z — 1)2 > 0

Equality occurs for (z,y, z) (1,1,1). In the case r = 10, equality occurs
1

2

2
again for (z,y, 2) = ( 7..- or any cyclic permutation. O

Sl
Sl
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*

11. If z,y, z are non-negative real numbers, then
yz zz Ty 3
< 2
322 +y? + 22 * 3y? + 22 + 22 Ty 2125

Proof Replacing z,y,z by v/z,,/y, /2 respectively, the inequality trans-

forms mto
Nz /A3
3z+y+2z 3dy+tz+z 3z4+z4+y "5
Without loss of generality, we may assume that z <y < z. For z = 0, the
inequality reduces to 3 (\/‘— \/5)2 + ¥z > 0, which is clearly true For
z > 0, since the inequality is homogeneous, we may assume that z+y+z = 2,

and then rewrite the inequality in the form

1 1 1 3
+ + <
i+ D) T Ayt AT D) - 2y
-1
We will apply now Corollary 3 to the function f(u) = ml—), v>0
We b . 3u+41 4
e have f'(u) = Suva(s + 1) an
(1Y _ zVE(z +3)
90 =1 (3) =S iy
vy V/Z(3z% 4 112% + 51 4 45)

Since g"(x) > 0 for = > 0, g(x) is strictly convex on (0,00). According to
Corollary 3, if 0 < £ < y < 2 such that z + y + z = 2 and zyz = constant,

then the sum 1 1 1

VD) L et ) | EEE)
is mazimal when 0 <z <y==:z
Therefore, it suffices to prove the original mequality for y = =z > 0. More-
over, due to the homogeneity, we may consider y = = = 1 The inequality
reduces to 9r? — 3023 + 3722 — 20z -+ 4 > 0, which is equivalent to

(z—1)%(3z —2)? > 0.

2
Equality occurs for (z,y,2) ~ (1,1,1), and also for (z,y,z) ~ (5,1, 1) or

any cyclic permutation O
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*

12. Let xz,y, z be non-negative real numbers such that x +y + z = 2. Prove

that
yz T Ty

x2 41 +y2+1 +;.v2+1 st
Proof. We assume that z < y < z For £ = 0, the inequality reduces to
yz < 1, which is clearly true for y + z = 2 Otherwise, we rewrite the
inequality in the form
1 1 1 < 1
z(z? + 1) + y(y? + 1) * 222 +1) ~ zy2

and apply Corollary 3 to the function f(u) = , u >0 Wec have

u(u? + 1)
, 3u? 41
f (u) = W-__*_l_)z and
a1y aYz? +3)
o2 = 1'(3) = Gre e
y 2¢%(x® + 5z — 722 4+ 12)
g7 = (=7 + 1)°

Since g”(z) > 0 for = > 0, g(z) is strictly convex on (0,00). According to
Corollary 3, if0 <z <y < z such that c + y + 2 = 2 and Tyz = constant,

then th
en the sum 1 _4 1

2@ 1) T ) T AE )
is minimal when 0 < z <y = z.
For0 < 2z <y = 2, fromz+y+2=2weget 0 <y=2<1 and
z = 2(1 —y) The inequality becomes

(v — 1)%(19y* — 18y + 5) > 0,

which is clearly true. For z < y < z, equality occurs (z,9,2) =(0,1,1). O

*
13. Let z,y,2 be non-negative real numbers such that x + y+z=2 If
<r<3, wh . 171, th
rg<r , whererg = —————— ,
0="= 0 In3—1In2 en

(y+2)+y(z24+2z)+ (2 +y) <2
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Proof Rewrite the inequality in the homogeneous form

r+y+ 2
2
and apply Corollary 5 (case p=r1 and g =7+ 1)

e for 0 <z <y < z such that

r+l

T+ y+ 2 = constant and z” +y” + 2" = constant,

the sum ™+ 4+ y™ 1 4 27+! is minimal when eitherz =0 or0 <z <y = 2.
Case z = 0. The initial inequality becomes

ya(yt + 2N <2
where y + z = 2. Since 0 < r—1 < 2, by the Power Mean Inequality we have

yr—l +z1~—1 < y2+22 %‘
2 - 2 )

Thus, it suffices to show that

2, ,2 24 .2
+ z 2y + = —
Taking account of i 5= Ey s 2) > 1 and < 1, we have
y
2, 2\ 5 2, .2
y"t+27y ¢ y 2y
_ g+ oyt (y—2)

Case 0 < z < y = z In the homogeneous inequality we may leave aside
the constraint £ +y + 2 = 2, and consider y = 2 = 1,0 < z < 1. The
mequality reduces to

r+1
(1+§) —z'—z—-12>0.

T r+1 o _
Since (1 +35 is increasing and z" is decreasing when r is increasing, it

suffices to consider the case r = rq Let

flz) = (1+ %)TOH _g g1
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We have
! o T0+1 ‘) To ro~1
fle) =" (1+§) ezl 1,
1, v rot+1 E)To_ro—l
e = (143) -
Since f”(z) is strictly increasig on (0,1}, f”(0;) = —oco and
| ro + 1 3)r° ro+ 1 3—-ro
- — —_ — = -—_ = O
)= (2 ot l= o —ro 1= 25 >0,

there exists 2; € (0,1) such that f’(x;,) =0, f’(z) <0 for z € (0,x,), and

f(z) > 0for x € (z1,1] Therefore, the function f'(z) is strictly decrcasing
rg— 1

for z € [0,z,], and strictly increasing for z € [z1,1] Since f/(0) = 0‘) >0

-

1173\
and f'(1) = ot [(—) - ‘2} = 0, there exists z; € (0,z;) such that

2 2

f'(z2) =0, f'(z) > 0for z € [0,22), and f'(z) < Ofor x € (x2,1) Thus, the
function f(z) is strictly increasing for z € [0, z5], and strictly decreasing for
z € [xg,1]. Sinece f(0) = f(1) = 0, it follows that f(z) >0for0O <z < 1,
establishing the desired result

For z < y < z, equality occurs when (z,y,z) = (0,1,1) Moreover, for

2 2 2

r = rg, equality holds again wlen (z,y,z2) = (5, 3 §) O
Remark Using the above way, we can show that forr > 3 and 24 y+2z = 2,
the expression

E(z,y,z) =2"(y+z)+y (z+z)+ 2" (z +y)

attains its maximal value when one of the numbers z, y, 2 is equal to zero. To
prove this claim, it suffices to show that the inequality E(z,y,z) < 2 holds
for 0 < z < y = z, while is doesn’t hold for z = 0 and any non-negative
numbers y and = satisfying y + 2 =2 Indeed, fory=2=1and 0< z < 1,
by Bernoulli’s Iuequality, we get

(r+)s (r-1)z
2

-z —z—1= 5 -z >z—2x" > 0.

r

2: 7+1
(14-3) —r'—r—1> 1+
In the special case r = 4, E(z,y, 2) is maximal when

,3—\/5,3+\/§),

3 3

1s we have shown in the above application 1

(z,y,2) = (O
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*

14. Let x,y, z be non-negative real numbers such that zy + yz + zx = 3. If
1 <r <2, then

g (y+2)+y (z+2z)+2(z4+y)>6

Proof. Rewrite the inequality in the homogeneous form

r+1l

:z:y+yz+z:c)) 2
3 .

x’(y+z)+yf(z+x)+z’(x+y)z6(

For convenience, we may leave aside the condition zy + yz 4- zz = 3 Using
now the condition £ + y + 2z = 1, the inequality becomes

1— 2 __ 2_22 03
s (1=2) by (=) + 1= 2) >0 (T

Towards proving it, we will apply Corollary 1 to the function f(u)=—u"(1-u)
for 0<u<1 Wehave f'(u) = —ru""! | (r + 1)u" and

g(z) = f'(z) = —rz" ! + (r + 1)2",
g"(z)=r(r—Dz"3{(r+ Dz +2—r]

Since ¢”(z) > 0 for £ > 0, g(z) is strictly convex on [0,00). According to
Corollary 1, if 0 € z < y < z such that

z+y+z=1 and x2+y2+z2=constant,

the sum f(z)+ f(y)+ f(2) is minimal for eitherx =0 or 0 <z <y =1z
Case z = 0. The original inequality becomes

yz (y'r—l 1+ zr—l) > 6,

where yz = 3 By the AM-GM Inequality, we have

r+1 r41

yz (yr—1+zr—1) 22(y3) 2 =2 372 >6.

Case 0 < z < y = 2. The original inequality becomes

y+y(z+y) 23,
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where 0 < £ < y and 2zy +9? = 3. From 0 < = < y and 2zy + y* = 3 we
obtain 0 < £ <1 Let

flzy=2"y+y (z+y)—3, with y=—-x++/22+3.
We have to prove that f(z) >0forO0<z <1 Forz=1, we get y=1 and

f(1)=0. Differentiating the equation 2zy + y? = 3 yields ¢’ = x‘—;’; Then,

fFl@)=rz"Ty+y + 2"+ ray +(r+ 1)y" ]y =

_ylr =Dty (e -y
- ull

<0
The function f(z) is strictly decreasing on [0, 1], and hence f(z) > f(1) =0
for 0 < z <1 Equality occurs if and enly if (z,y,2) = (1,1,1). a

Remark. Marian Tetiva found a nice solution for the particular case r = 2.
Write first the inequality in the form

(zy +yz+ 2z)(z + y + 2) > 3(zyz + 2),

that is
ct+y+z2zyz+2
Assuming that z < y < z, the hypothesis 2y + yz + 2z = 3 implies 2y < 1
and yz > 1 Hence
(I-zy)yz— 1)+ (1 -y)* >0,
or
y(z+y +2-3yz-2) 20,

from which the conclusion follows

*
15. If x),x9,...,Zn are positive numbers such that
1 1 1
Tyt It ot T = — 4 — 4 —
Ty T3 In
then
1 1 1

+ > 1.
1+ (n—1a, 1+(n—1):r:2+ +1+(n—1):rn_
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Proof. We have to consider two cases.
Case n = 2. The inequality is verified as equality.
Case n > 3. Assume that 0 < z; < z9 < --+ < z,, and then apply

Corollary 2 to the function f(u) = m foru>0
We have f'(u) = — (1) and
L+ (n— Lu]?
o _1__ B —(n— 1z
gw*‘ftﬁ)_hﬁ+n—nw
3(n —1)2

Y-

Since ¢”’(z) > 0, g(z) is strictly convex on (0,00). Accordimg to Corollary
2, if0< zy <29 < -+ < xpy, such that 21 + 20+  + zp = constant and

1 1 1

$—+ o bt ?L_—zconstant, then the sum f(z1) + f(z2) + --- + f(zn) is
1 2

minimalwhenoga:lgmg:x;;: --=1Ip

So, we have to prove the inequality
1 n n—1 > 1
14+ (n—1Dz 14+ (n-1)y ="’
under the constrants 0 < z <1 <y and

1 -1
x'+‘(n—1)y‘—';+n

)
The last relation is equivalent to
y(1 - %)
-D(y—-1)=
Since
1 N n—1 1=
l+(n=1)z 1+ (n—-1y
| 1 n—1 n—1

“1¥m-0z n Ttn-1y =
 (-D(-2)  (-1P(y-1) _
Al (n—1Dal  nlL+(n— 1y
C(m)(-2z)  (n-ly(i—a?)
S Al (n-Dal  ne(l+ 51+ (n— 1’
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we must show that

s(1+y)[L+ (n—Dy] 2 y(t +z)[t + (n - 1)2],
which reduces to
(y—z)[(n—Dzy—-1]>0.

Since y — x > 0, we still have to prove that

(n—1)zy > 1.
I n-1 +((n—1zx
Indeed, from z+ (n— 1)y = ;Jr we get zy = %—;—E—T:_—-%)y, and hence
n(n — 2)z
—1 —1l=———7>0.
(n — Dzy Py o
For n > 3, one has equality if and only if 2y =29 = -+ =2, = 1. O
*

16. If a,b,c are positive real numbers such that abc = 1, then

1 1 1
a3+b3+c3+1526(—+—+—).
a b ¢

Proof. Replacing a, b, c by , respectively, we have to show that

‘L?IH

1

+

1
x’
1
x3y_3

le"‘ NI*—-‘

+ 5 +1526(z+y+2)

for zyz = 1. Assume that 0 < z < y < z and apply Corollary 5 (case p == 0
and g = —3):

o If0<2<y< zsuchthat x4 y+ z = constant and xyz = 1, then the

1 1 1
sum 2—3+ P+z—3 is minimal when 0 < 2z =y < 2.

Thus, it suffices to prove the inequality for 0 < z = y < 1 € z and

x%z = 1, when it reduces to.

2 1
:—c§+z—3+1526(2x+z),

2
S+2541526 (2 ),
xz I

2% — 1221 + 152° — 62+ 2 > 0,

(1—:1:)2(2—2x—6x2+523+4x4+3x5+2x6+m7) = 0.
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The last inequality is true if 2 — 22 — 622 + 523 + 321 > 0for0 < 2 < 1
Indeed, we have

2(2—2x—6x2+5x3+3x4):

3 3
(2—3x)2(1—+—2x+zx2)+:r:3(1—za:) > 0.

Equality occurs f and only if a=b=c¢=1 O
*
17. Let a1, aq, ..,a, be positive real numbers such that ajap...ap = 1.

If m is a positive integer satisfying m > n — 1, then

1 1 1
al>’ + a3’ + -4 anm+(m—1)n_>_~m(—+—+-- +—)
ay a3 an

Proof For n = 2 (hence m > 1), the inequality reduces to
af* + a3’ + 2m — 2 > m(a; + a3)

We can prove it by summing the inequalities a* > 1 + m(a; — 1) and
al* > 1 4 m(ay — 1), which are straightforward consequences of Bernoulli’s

1 1 1
Inequality For n > 3, replacing ay,a2,.. ,an by —, —, . ,—, respec-
r 2 In
tively, we have to show that
1+1-+ +1~|(m—1)n>m(r +ro+ -+ zn)
xT xan 33:-?’ = 1 2 n

for zjz9 . = 1 Assume that 0 < z; < 29 <
Corollary 5 (case p =0 and ¢ = —m)
e [fO0< 2y <29 < - < xn such that z; + 22+ -+ 2, = constant

- £ zp and apply

1 1 1
and 2123 .. % = 1, then the sum — + — -+ + ——- is minimal when
OK<zi=20=" =2Zpn_1=< In.
Thus, it suffices to prove the inequality forzy =29 = - =2,y =2 <1,

2n =y and £" "y = 1, when it reduces to

n—1 1
o+ (m = 1)n 2 min 1)z 4 my

By the AM-GM Inequality, we have

n—1+(m—n+1)_>_ m

m xn—l

:my
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Then, we still have to show that

L 1> mn-1)z—-1)
Yy

This inequality is equivalent to
g~ 1l —-mn—-1)(z-1)>0.
Writing the inequality as
(- 1) [(xmn*m‘l — 1) + (zmnm 2 - 4 +(z - 1)] >0,

it is clearly true. For n = 2 and m = 1, the inequality becomes equality.

Otherwise, equality occurs if and only if a; = a3 =-+- =g, = 1. O
*
18, Letz\,z2,.. ,z, be non-negative numbers such that z; +ro+ .z, = n.

k-1
n
If k is a positive integer satisfying2 <k <n+2, andr = ( 1) -1,
n —
then
ko ok k
) +l'2 + ..._*_xn—-n > TI,T(]. —T1x9. -xn)-

Proof Ifn = 2, then the inequality reduces to zf+z§ -2 > (2 -2)(1—2,22)
For k = 2 and k = 3, this inequality becomes equality, while for k& = 4 it
reduces to 6zz3(1 — z125) > 0, which is clearly true.

Consider now n > 3 and 0 < z; < 29 < - < z,. We will apply
Corollary 4 (case p =k > 0).

o [fO< 2 <2< < zpsuchthatzy+zo+ --+2z, = n and
z¥ + f+. o+ 2k = constant, then the product x1x2. zn is minimal when
either zy =0 0or0< 2) < xg =23 =--- = 2,,.

Case z1 = 0. The inequality reduces to

k

withz3+- +2, = n. This inequality follows by applying Jensen’s Inequality
to the convex function f(u) = u*:

$2+---+2n)k

zh+ -t a2 (n-1) —
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Case 0 < zy 29 =23 =--- =2z, Denoting
zy=x and z9 =23 =+ =Zp =Y,

we lhave to prove that for0 < z < 1 < y and 2+ (n — 1)y = n, the inequality
holds:

¥4 (n - Dy* +nrzy™ —n(r+1) >0
We write the inequality as f(z) > 0, where

n—=x

fz)=zF+ (n = 1)g* 4+ nrazy™™! —n(r + 1), with y= —.

-1
We see that f(0) = f(1) =0. Since y’ = e have

fla)y=k(@* =y ) +nr?(y-2) =
= (y — z) [nry"‘2 —k (y""2 +y* %z 4. -+ :ck'Q)] =
(y = z)y" % Inr — kg(2)],

where
. 1 T zh—2
g(x) = ynF + gkt + o+

n—zx _ : .
— is strictly decreasing, the function g(z) is

Since the function y(z) =
strictly increasing for 2 < L <n Fork=n+1, we have

2 n—1 2 n—1
x T (n-2)z+n = x
g(x)—y+x+?+ +yn_2— — +y+ +yn_2,
and for k = n + 2, we have
3 T
z z
Q(x)=y2+yx+:z:2+?+---+yn_2=
__(n2—3n+3):):2+n(n—3):1:+n2+:c_3+' - z"
- (n_1)2 y yn—2'

Therefore, the function g(z) is strictly increasing for 2 <k < n 42, and the

function
h(z) = nr — kg(z)

1s strictly decreasing. Note that

fi(z) = (y = z)y" h(z)
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We assert that h(0) > 0 and k(1) < O If our claim is true, then there
exists x; € (0,1) such that k(x,) =0, h(z) > 0 for z € [0,2,), and h(z) <0
for r € (x1,1] Consequently, f(x) is strictly increasing for z € [0,2,], and
strictly decreasing for x € [z;,1] Since f(0) = f(1) = 0, it follows that
f(z) 20 for 0 <z <1, and the proof is completed.

In order to prove that £(0) > 0, we assume that 2(0) <0 Then, h(z) <0
for z € (0,1), f/(z) < 0 for z € (0,1), and f(z) is strictly decreasing for
z € [0, 1], which contradicts f(0) = f(1). Also, if k(1) > 0, then A(z) > 0
for z € (0,1), f'(z) > 0 for 2 € (0,1), and f(z) is strictly increasing for
r € [0, 1], which also contradicts f(0) = f(1)

Forn>3 and x; <z, < < z,, equality occurs when

Ty =2y = - =2xp=1,

n

O

and also whenz; =0and 2y =+ - =z, = T
" —

Remark 1. For k=2, k = 3 and k = 4, we get the following nice imequali-
ties
(n—1) (xf+x§+ : +xfz) + nxyzy ..TH > N,
(n—1)2 (a:"f + x5+ +a:g) Fn(2n— Dzyzy ... 2, > 1°,

(n—1)3 (:r‘ll+:cg+ ---+zf1) +n(3n% = 3n + 129 .2, > 0t
for 21,23, . ,z, non-negative numbers such that 2; + zo + - -+ z, = n

Remark 2. For k = n, the inequality was posted in 2004 on Mathlinks
Inequalities Forum by Gabriel Dospinescu and Cdlin Popa.

*

1 1 1
19. Let xy,29,...,x, be positive numbers such that —+ — +--- 4+ —=n

r, I3 In
Then

1+ T2+ trp—n<ey(z122.. 7o - 1),

1 n-1
where eq_; = (1 + ) < e.
n—1



216 5 Inequalities involving EV-Theorem

1
Proof Replacing each of z; by = the statement becomes as follows

i
o If ay,az, .,a, are positive numbers such that ay +as+ +a,=n,
then
1 1 1
ajag ap|l—+—+ -+ ——n I-Cn—l) < én-
a as an

It is easy to check that the inequality holds for n = 2.
< < ap and apply
Corollary 4 (case p = —1) If 0<a; <ay < - < a, such that

Consider now n > 3, assume that 0 < a; < a3 <

1 1 1
ai+a+-- +an=n and —+ — + -+ — = constant,
aj as an
then the product ajay ..a, is maximal when0 < ay <ap=a3= --=an
Denoting a; = x and as = a3 = -- = a, = y, we have to prove that for

n
I and z + (n — 1)y = n, the inequality holds
n —

O<z<1<y<

2 - (TL - en—l)-rynrl <eéen

y" I+ (n - 1)zy"

Setting
f@)=y"""+(n—Dry" 2 - (n—en_1)2y" ' — a1,
n—zx

with y = [ we must show that f(z) < 0for 0 <z < 1. We see that
n —

-1
f(0)=f(1)=0 Sincey = o e have

g =W —2)[rn=2-(n—en1)y] = (y — 2)h(x),

n—=x

where li(z) =n —2—(n—en_1) is a linear increasing function

Let us show that h(0) <O anvcli h(1) > 0 If h(0) > 0O, then h(zx) > O for
z € (0,1), hence f'(z) > 0 for z € (0,1), and f(z) 1s strictly increasing for
z € [0, 1], which contradicts f(0) = f(1) Also, k(1) =en_; —2>0.

From h(0) < 0 and k(1) > 0, it follows that there exists z; € (0,1) such
that h(z1) =0, A(z) <0 for z €[0,21), and h(x) > 0 for z € (z;,1] Conse-
quently, f(x) is strictly decreasing for z € [0, z;], and strictly increasing for
x € [z1,1] Since f(0) = f(1) =0, it follows that f(z) <Ofor 0 < xr <1

For n > 3, equality occurs when z; =2, =- - =z, =1 O
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*
20. Let xy,x2,...,xn be non-negutive numbers such that xy+xot. +xzn=n
h-1
n -1
If k > 3 is a positive integer and r = T then
n —
:1:’1"+x’2‘+- -+x,’;—n_<_r(a:?—l-:c§ |----+xfl—n)

Proof. There are two cases to consider
Case n = 2. The inequality reduces to

xf 4+ 2k + (2 = 2)zyzy < 2F

For k = 3, the inequality becomes equality Consider now k > 4 We must
show that f(t) <0 for t € [0,1], where

F) = (L+ )% + (1= t)% + (2% - 2)(1 — %) — 2%,

We have
FO=k[(1+5 " = (1-t)*] — (21— a),
1'(t) = k(k - 1) [(1 O (1= )T -2k g,
) =k(k—1)(k=2) [(1 + )52 = (1 - ¢)*3].

Since f” > 0 for t € (0,1], the second derivative f” is strictly increasing.
Since f(0) = 2k(k—1)—2*"' +4 < 0and f7(1) = (k2 —k—8)2*2+4 >0,
there exists ¢; € (0,1) such that f/(¢;) = 0, f”(t) < 0for t € [0,¢;), and
f(t) >0forte (t;,1] Thus, the first derivative f’ is strictly decreasing on
[0,1] and strictly increasing on [t1,1] Since

F(0)=0 and f/(1)=(k—4)2""14+4>0,

there exists {2 € (0,1) such that f'(t5) = 0, f'(t) < 0 for t € (0,t5), and
f'(¢) > 0 for t € (t2,1). Therefore, the function f is strictly decreas-
ing on [0,t3} and strictly increasing on [t3,1] Taking into account that
f(0) = f(1) = 0, it follows that f(t) <O for t € [0, 1]

Cuse n >3 Assumcthat 0< 2, <2y < - <z, and apply Corollary 5
(case p = 2 and g = k > p).

e [f0 <2 <29 €+ <z, such that z +z04+ - +2, = n and
z? + 22 4 - + 22 = constant, then ¥+ 2k + -+ 2% is mazimal when
OS<zy=10= - =294 <z,
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So, we have to prove the inequality
(n—l)xk—i—y"—ngr[(n—1)$2+y2—n],
where 0 <z <1 <yand (n— 1)z +y=n Let
f(z) = (n—1)z* + y* —n—r [(n—l)a:2 + yQ—n] , (r=Dz+y=n

We have to show that f(z) <0 for z € [0,1] Since ' = —(n — 1), we have

1 . . 2
k(n—1) flw) =2t =yt - '1(1: (=-y),
1 " _ k-2 _ k-2 _ 2nr

1

’\(k—l)(k—2)(n—1) f’fl(x) = g;"'3 — (n — 1)2yk—3_

Since f"" < 0 for z € [0,1], the second derivative f” is strictly decreasing.
Taking into account that (n — 1)r < n*~1 and

r=nF 2k 34 pag1 >0k 20k 3L qoy =0k
we have

£(0) = k(k=1)(n—1)*n*2~ 2n(n—1)r > k(k—1)(n—1)nt2 - 2n*
2 6(Tl—1)2nk_2— onk = 2n"“2(2n2—6n +3)>0

v

and

1
S htk—1)= 2r < k(k—1)= 2(281 = 1) = K2~k + 2-2* < 0.
n(n—1)
Then, there exists z; € (0,1) such that f"(z;) = 0, f’(z) > O for
z € [0,z1), and f’(z) < O for z € (21,1] Thus, the first derivative f' is
strictly increasing on [0, 2] and strictly decreasing on [z, 1]. Since

!
L]O) =2(n—-r—k(n— 1)n*2 < o2nt-t = k(n - 1)n*-2 =
/

= —n*"2k(n—1)=2n] < —nk'2[3(n—1)—2n]——-—n"_2(n—3) <0

and f/(1) = 0, there exists z3 € (0,1) such that f'(z2) = 0, f'(z) < 0 for
z € (0,z2), and f'(z) > 0 for = € (22, 1]. Therefore, the function f 1s strictly
decreasing on [0, 2] and strictly increasing on [x3,1]. Since f(0) = f(1) =0,
it follows that f(z) < 0 forz € [0,1] The proof is complete Equality occurs
when zy = 3 = - = zp, as well as when n—1 of the numbers z; are0 O



53 Solutions 249

*

21. Ifzy,29,.. ,xn are positive numbers, then

i +a7+- trpt+n(n-lzizy 2.2

1 1 1

Proof For n = 2, one has equality. For n > 3, assume that

O<zry <29 £+ <2y

and apply Corollary 5 (case p = 0):
e [f0<z; <x29<--- <z, Such that 1 + 22+ - -+ + z,, = constant and
Z1T9 . Tp = constant, then the sum z + x5 + -+ z is minimal and the
1 1
sum —+-—+ 4 — is manmal when 0 < 2y <29 =23 =+ =,
T Xy z
Thus, it suffices to Brove the homogeneous inequality for 0 < z; < 1 and
29 = x3 = --- =2z, = 1. The inequality becomes
z} + (n— 2)z1 = (n — 1)z2,

and is equivalent to z1(x; — 1) [(2’1“2 -1) + (a:’l‘_3—1)+ . +(x1~1)] >0,
which is clearly true.
Equality occurs if and only if 2y = 29 = --- =z, 0

Remark. For n = 3, we get the third degree Schur’s Inequality,
:1::;’ + :cg + 23 F 6x12925 > (1 + 22 + z3) (2122 + 2923 + Z371).
*

22. Ifzy,23, ,z, are non-negative numbers, then

(=1 (2T + 25 + - +23) +nzyzy zn >
2(:1:1+.’r2+---+9:n)(:r?'1+:c’2"1+---—+—x2'1).

Proof. For n = 2, one has equality For n > 3, assume that
O0<z <z <--- <Lz

and apply Corollary 5 (case p=n and ¢= n—1) and Corollary 4 (case =n -
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e [fO< 21 <29 £+ L 2y such that 2y + 20 + -+ + £, = constant
and =% + 8 + -+ + z = constant, then the sum 277! + 2371 4+ ... + 27!
is mazimal and the product 2122 .2, is minimal when either x; = 0 or
O<zy <9 =23='-"=2,

Thus, it suffices to consider the cases z1=0and 0 < z1<zp = z3= . = I,

Case £; = 0 The inequality reduces to

(n=1)(2F + - +22) > (z2 4 +za) (27 +  +2771),

which immediately follows by Chebyshev’s Inequality
Case 0< 21 <z =23 = = x,. Setting z9 =23 = --- = 2, = 1, the
homogeneous inequality reduces to

(n—=2)20 + 21 2 (n— 1)51:’1’_1
Rewriting this inequality as

zi(e —1) 27 3@~ D +ef (22 - 1)+ + (]2 -1)] 20,

we see that it is clearly true For n > 3 and z; < 22 < - < zp, equality

occurs when z; = g9 = --- = I, and also when 2o = - - =z, O
*
23. If xy,z3, ..,xzn are non-negative numbers, then

(n—1) (zf* + 23+ +a3t) 2

>(zy 422+ +za) (2l 4 25+ +zxp—21%2. Zn)
Proof. For n = 2, one has equality For n > 3, assume that
0<z1 <z < S 2p

and apply Corollary 5 (case p = n+ 1 and ¢ = n) and Corollary 4 (case
p=n+1)

o [f0< xy <29 <+ L xpy, such that xy + 29 + --- + 2, = constant
and =it 4 20t 4+ .. 4 27+ = constant, then the sum 27 + 23 + - + 23
is mazimal an the product z1z3 .z, is minimal when either z; = 0 or
O<z1 <z =23 = --+-=1=Zn
Thus. it suffices to consider the cases ;1 =0and 0 < 21 <x3 =23 =+ * = Zp,
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Case 1 = 0 The inequality reduces to
(n=1) (=7 +- 420 2 (@2 + 4a2a)(2af 4 +2]),

which immediately follows by Chebyshev’s Inequality.
Case 0 < 2y < 29 = 23 = =2, Settingay =z3= =2, =1, the
homogeneous inequality reduces to

(n—2)2* ! + 22 > (n —1)a].
Rewriting this inequality as
:12?(.’131 — 1) [(L‘?_S(:El — 1) + :E?_4 (m% — 1) + + (m?-—2 _ 1)] >0,

we see that it is clearly true. For n > 3 and z; < 25 < -+ € 1z, equality
occurs when zy=29=--- =z, and also when z; =0 and 23 = --- = 2z,. O

Remark 1 We may reformulate the inequality above as follows
o If xy,x9,...,2, are non-negative numbers such that

zrt+z24+ -t =mn—1,

then
P(l—2)+ 281 —22)+ 4 2h(l —2z,) <zp20.. . 29

Remark 2. Gjergyi Zaimi and Keler Marku generalized the above inequal-
ities for any real & in the following form (problem 69 from chapter 8)

(1) (e +aft 4 o) bmen oz (22 2h) 2

> (zy+z24 -+ zn) (m?*"—l Fafthly +x’r:+k—1) '

*
24. If x1,x9,...,2, are positive numbers, then
1 1 1 1
(z1+x24- - 42,—n) (—-——{—-——{— e — — n)+:r1:z:2 Tyt ———>2
I &9 Tn Tixre .Iy,

Proof. For n = 2, the inequality reduces to

(1— :1:1)2(1 - :1:2)2
T1Z9

>0.
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o
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5. Inequahties involving EV-Theorem

For n > 3, assume that 0 < z; < 29 < --+ < z,. Since the inequality

preserves its form by replacing each number z; with —, we may consider

T
129 ..Zn > 1 By the AM-GM Inequality we get '

1+ T2+ -+ —n2nYnT2.. T —n 20,

and thus we may apply Corollary 5 (case p = 0 and ¢ = —1)

e If0<xy <x9 <+ < 2z, Such that z1+ 22+ - - + zn = constant and

1 1
T1x9.. Tn = constant, then the sum — + —+ -+ — is minimal when
I o)) In
0<$1::.’E'2: '_—":En__]_<_$n.

According to this statement. it suffices to consider
Ty=29=---=2Znp.1 =2 and z, = ¥,

when the inequality reduces to

[(n~1)a:+y—-n]( +§—-n)+m“ y+x"“1y22'
or
_ — 1 1 _ n(n—-1)(z—1)>
1
(ot 22 o [k o] 20
Since
n—1 n—1 z—1 n—1 n—2
—-_n=— -1 -1 —1)| =
t == (@ = 1)+ ("= 1) 4+ (2-1)
(ﬂ:—‘]')2 n—-2  o,.n-3
= 2 -1
= [:1: +22" +. +(n )]
and
1 (z—-1)271 1 2
pn-1 —{—(71—-1)2:—-”: x [:12"_2 +:1:"'"'3+ “+(n—'1)]1

it is enough to show that

[z"2+ 20" 2 o+ (n— 1)) y+

1 2 1
+[W+m+---+(n—-1)]§2n(n—l).
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This inequality is equivalent to

1
n—2
-2
(m y+ :1:"‘2y ) +

—2)+ --+(n—-1)(y+%~2)20,

2 n—-3
+ (2: y+:1:"*3y

or

(mn—Qy—-l)2 2(9:"—31;——1)2_Jr __+(n-—1)(y—-1)2

: >0,
mn—fzy + 9:""3y y

which is clearly true. Equality occurs in the given inequality if and only if

n — 1 of the numbers z; are equal to 1 O
*
25. If xy,29,...,2, are positive numbers such that xyx9...2, = 1, then
1 1
— < L
Vet zo+ -+ 2, —n 1 1 1
—+—+-+——n
T x2 Zn
1 1 1
Proof. Let A=z +294+ - -+2zp—nand B=—+4+ —4--- f ——n

T T T
From the AM-GM Inequality, it follows that A and h are positive. chording
to the preceding problem, the following inequality holds for any positive
numbers zy,22,. ,Tpyq!
1 |

1
($1+$2+---+$n+1~n~1)(—+—+---+
5] I9 Tnitl

—n—1}+

1
+z1z2. T+ —mm—— > 2
T1TZ2...ZTnp41

This inequality is equivalent to

(A—1+a:n+1)(B—1+ )+:1:n+1+ >2

Tnil Tni1

or

+ Bz, + AB~A—B>0.

Tnyt
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A
Replacing zn,1 by \/;, yields

9VAB+ AB—~ A~ B >0,

AB > (VA-VB)’,
1> ( 1 1 )‘
VA \/_
e
The last inequality is just the desired inequality. 0O
*
26. Ifxy,x9,.. ,r, are non-negative numbers such that z,+x9+ -tz,=n,

then 1
(129 xp) VT (mf+m% + 4z ) <n

Proof. For n = 2, the inequality reduces to 2(z;zs — 1)2 > 0 For n > 3,
assume that 0 < z; < z9 < --- < z, and apply Corollary 4 (case p = 2):
e for 0 <z <z < < g,

z1+z2+--+zpn=n and mf+:r§+---+:ri:constant,

the product x1xq. .zn is mazimal when 0 <z =29= - =2p_1 < Tp.

Consequently, it suffices to show the inequality for xy =22 = =Ly =2
and z, =y, where 0 < z < 1 < y and (n — 1)z + y = n. Under the
circumstances, the inequality reduces to

1
gVily vt [(n—- 1)m2+y2] <n

For z = 0, the inequality is trivial For = > 0, it is equivalent to f(z) < 0,
where

f(2)=vn—-1lnz+

1 2, .2
mlny+ln[(n—-1)x {—y]—-lnn,
withy=n—(n—1)z
We have y = —(n — 1) and

2
fa) _1 1 2/a-T(z—y (y—2)(Vrn—1z—y)

_1 1 - >0
n—1 =« y n—-l:z:2+y zy[(n—1)22 +y?
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Therefore, the function f(z) is strictly increasing on (0,1] and hence

flry<f(1)=0.

Equality occurs if and only if 2y = 29 = -+ = 2, = 1. O

Remark. For n = 5, we get the following nice statement:
e If a,b,c,d are positive numbers such that a® + b* + c2 + d? + €2 = 5,
then
abcde (a4 +¥ A+ d + 64) <5,

*

27. Let x,y, 2 be non-negative numbers such that zy + yz + zx = 3, and let
In9—1In4

> ~0.738.
i o3 0.738. Then,

2P+ yP 4+ 2P >3

In9—~1n4

Proof. Let r = 3

By the Power-Mean Inequality, we have

P +yP 2P (a:’"+y"+zr)‘:
3 - 3 )

Thus, it suffices to show that
2"+ y + 2" >3

Let z < y < z. We consider two cases
Case z = 0. We have to show that y" + 2" > 3 for yz = 3 Indeed, by
the AM-GM Inequality, we get

LETh
[1h ]

vy +2">2yz)2 =2 37 =3,

Case z > 0. The inequality z" + y” 4+ 2" > 3 is equivalent to the homo-
geneous inequality

mr+yr+zr23(%)§(l+l+l)2_
3 Ty =z

. L 1 1 . .
Settingz =av,y=bv,2=c" (0<a<b< ¢), the inequality becomes

1
abc\? oot a1 Sang
a+b+c23(T) (ar + b +Cr) .
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To prove this inequality, we apply Corollary 5 (case p =0 and ¢ = ————-E)

o If 0 <a<b< csuchthat a + b+ ¢ = constant and abc = cogstant,
then the sum a+ + b5 + ¢+ is mazimal when 0 < a <b=c

So, it suffices to prove the inequality for 0 < @ < b = ¢, that is, to
prove the homogeneous inequality in z,y,z for 0 <z <y =:=1 So the
inequality reduces to

2 3
:rr+2_>_3(“m+1)
3
Denoting
"+2 r . 2x 41
f(z)=1In g g e,

we have to show that f(z) > 0 for 0 < 2 <1 The derivative

rat] r rlz — 22177 4+ 1)

/ = — —
f(=) 2"+2 2241 zl-m(am+2)(2x 4 1)

2(1 —r)
we see that ¢’(z) < 0 for z € (0,z;), and ¢'(z) > O for x € (x1,1], where
= (2— ‘.21")% ~2 0.416 The function g(z) is strictly decreasing on [0, xy],

has the same sign as g(z) = = — 22'~" + 1 Since g'(z) = 1 —

and strictly increasing on [z1,1] Since ¢(0) = 1 and g¢(1) = 0, there exists
z2 € (0,1) such that g(ze) =0, g(z) > O for 2 € [0,z2) and g(z) < O for
z € (z9,1) Consequently, the function f(z) is strictly increasing on [0, z2]
and strictly decreasing on [z2,1] Since f(0) = f(1) = 0, we have f(z) > 0
for 0 < x < 1, establishing the desired result.

o In9 —-In4
Equality occurs for z = y = 2 = 1 Additionally, for p = BTV and

z <y < z, equality holds again forz =0 and y = 2 = /3 O
*

28. Let z,y,z be non-negative numbers such that x + y+ z = 3, and let
In9 —In8

> ——— =~=0929. Th
P23 "o 9. Then,

P +yP + 2P > 2yt yz + 2x

Proof. For p > 1, by Jensen’s Inequality we have

SETE LN

3 m+y+z)22my+yz+:m

I
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In9—1n8

) In3—1In2
equivalent to the homogeneous inequality

Assume now p < 1 Let r = and 2 < y < z The inequality is

r+y+ =
3

By Corollary 5 (case 0 < p < 1 and ¢ = 2), for 2 < y < z such that

z +y + z = constant and 2P + yP 4 zP = constant, the sum z2 + y? } 2° is

minimal when eitherz =0 or0 <z <y = z.

P 4 yP 4 =P or 2 2 2 =12
2(z? + yP + 2P) +ztty +2 > (x+y+ )"

Case x = 0. Returning to our original inequality, we have to show that
y?P+ 2P > yz fory+4 2 =3 Indeed, by the AM-GM Inequality, we get

= (y2)} [2~ (g)wl > (y2)? [9— (3)2“] =0

Case 0 < z <y = z. In the homogeneous inequality, we may leave aside
the constraint z + y + 2 = 3, and consider y = 2 =1 and 0 < z <1 Thus,
the inequality reduces to

2-p
(:rp+2)(x?;2) > 2 + 1.

To prove this inequality, we consider the function

x4+ 2

flz)=In(zP+ 1)+ (2—~p)In —In(22 + 1)

We must to show that f(z) > 0for0 < 2 <1 We have

0 [ A e S TR
xP 4 2 T 22 +1 a:l“P(a:P+1)(2:1:+1)’
where
9(z) =2+ (2p~ )z + p+2(1 —p)2* P — (p+ 2)2! 7,
and

g(z)=22+2~14+2(1-p)(2-p)2"P - (p+2)(1-p)z"?,
g"(x) =2+ 2(1 - p)*(2 - p)x ™ + p(p + 2)(1 - p)z P,
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Since ¢"(z) > 0, the first derivative ¢'(z) is strictly increasing on (0, 1].
Taking into account that ¢’(04) = —oo and ¢'(1) = 3(1 —p) +3p? > 0, there
is z; € (0,1) such that ¢’(x;) = 0, ¢'(z) < 0 for =z € (0,2;) and ¢'(z) > 0
for € (z1,1] Therefore, the function g(z) is strictly decreasing on [0, z;]
and strictly increasing on [z1,1]. Since ¢g(0) = p > 0 and g(1) = O, there
is 2 € (0,21) such that g(xz9) = 0, g(z) > 0 for 2 € |0,22) and g{z) < O
for z € (z2,1]. We have also f’(z2) = 0, f'(z) > 0 for z € (0,22) and
f'(z) < O for z € (22,1] According to this result, the function f(z) 1s
strictly increasing on [0, z9] and strictly decreasing on [z, 1]. Since

f(0)=ln2+(2—-p)ln§2ln2+(2——r)ln§=0

and f(1) =0, we get f(z) > min{f(0), f(1)} >0

In9 —In8§
i =y = z = 1. Additionally, f = —————— and
Equality occurs forz =y = 2 ditionally, for p 3 Ino an
3
z <y < z, equality holds again when z =0 and y = 2 = 5" O
*
29. If 2,29, . ,z, (n > 4) are non-negative numbers such that
Ttz t+- +xp=mn,
then
1 1 1
+ + + <L
n+l—x9x3 ..z, nt+l—2324 x n+l—a29. .. 2,01

1 n—1
Preof Letr; <2< --<zpande, ;| = (1 +n——1-) By the AM-GNM

Inequality, we have

zot -z \" _ fztzet -z \MH
Tg . Tp < '—'——_) < = €n-1
n—1 n—1

Hence
n+l—a923. zp,2n+1—ep_1 >0,

and all denominators of the inequality are positive
Case xy = 0 It is easy to show that the inequality holds
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Case zy > 0 Suppose that z129 .2, = (n + 1)r = constant, r > 0
The inequality becomes

I T2 Ty

+
ry—r xT9—71 Tp—r

or

1 1 3 1

ry—r xo—rT Tp—T

By AM-GM Inequality, we have

n
(n+1)r =x129 .. a:ng(x1+$2+ +I")

1 1
whence r < T Fromap <z 429+ - +2p=n<n41< ;,weget
n
1
2n < —. Therefore, we have r < x; < — for all numbers z;.
r T
-1
We will apply now Corollary 3 to the function f(u) = U > 7.
1
We have f'(u) = wor? and
1 z? 4rz + 2
=fll) = — 1" = —
9l@) =/ (:1:) T=re’ 7= T

1
Since g”(z) > 0, g(z) is strictly convex on [0, —). According to Corollary
T

3 and Remark from section 51, if 0 < z; < 29 < -+ < =z, such that
Ty +z2 + ---+ xn = constant and z;z9 ..z, = constant, then the sum

flz1)+ f(z2)+- -+ f(zn) is minimal when z; < 19 = 23 =+ =2z, Thus,

to prove the original inequality, it suffices to consider the case 2; = z and

Tg=2z3=' =Tp=y, where0<z<I<yandz+(n—1)y=n.

We leave to the interested reader to end the proof. O
*

30. Let a,b,c be positive numbers such that abc = 1. Prove that

1 1 1 9
(+ap "+ 0) " {Trer  Traa+oire >
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1 1 1
P D t = = —_— z = _——
roof. Denote z 1+a,y T35 1+c’5 z+y+ 2z and

Q =1%4 y? + 2%, where 0 < 2,5,z < 1 The hypothesis ebc = 1 becomes
zyz = (1 —2)(1 —y)(1 — 2), that is

4:1:yz+:1:2+y2+z2=1+(:1:+y+z—-1)2,

while the required inequality transforms into 2% + y? + 2% + 22y2z > 1, that
is
(z4+y+z2—-12+224+y24+22>1

For the sake of contradiction, assume that (2 4+y+2—1)2 422432422 <1
It suffices to show that daxyz+a®+y? +22 < 14+ (2 +y+2—1)? According to
Corollary 4 (case p= 2), if 0 < x < y < 2 such that z+y+z = constant and
24324+ 2% = constant, then the product xyz is marimal when0 <z =y < z
Therefore, it suffices to consider the case x = y So, we have to show that
(2z+42—1)242224 22 < 1 implies 4222+ 222+ 22 < 14+ (224+2—1)%. Assuming
the contrary, that 422z + 22% 4+ 22 > 14 (2z + z — 1)?, which is equivalent
(z~1)?

to z > m, it suffices to show that (2z 4 z —1)? + 222 + 22 > 1.

(x —1)2 z(4x? — 52+ 2)
T+ 2 2 m+m2+(m_1)2 922 — 9z + 1

> 0,

(z—1)°

m We have

it is enough to prove the inequality for 2 =

—9:2(3:1:2 —dz + 2)

,.2__1____.
(2:1:2—-2?£+1)2 ’

and lLience

2 4:1:2—5:1:+‘2)2 :1:2(33:2—-41:+‘7)
22 _122222_:9:( 9,2 _ : <) _
(Rotz—1)"+20%+ ! (222 ~ 22z +1)? e (222 — 2z 4 1)?
2:1:2(12:1:4 — 2823 + 2722 — 192 + 2) _

(222 —2r 4+ 1)?

22%(22 — 1)%(32? — 42 4 2)
- >0
(222 — 22+ 1)2 -

Il

Fquality in the given inequality occurs if and only ifa = b=c=1 O
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*

31. Let a,b,c be non-negative numbers such that a + b+ ¢ > 2 and
ab+bct+ca>1. If 0<r <1, then

a" + b + ¢ > 2.
Proof. We may write the second condition as
(atb+e)? —(@®+b+cH)>2

This suggests us to apply Corollary 1 to the convex function f(u) = —u" If

0<a<b< csuch that a+ b + ¢ = constant and a? + b2 + ¢ = constant,

then the sum f(a)+ f(b)+ f(c) s mazimal for eithera =0 or0 < a < b= c.
Case a = 0. From ab+ be + ca > 1 we get be > 1. Consequently,

@ b+ =+ > 2Vbrer > 2
Case0<a<b=c If¢c> 1, then
A+ +c =a"+2c">2" > 2
Ife<l,thenO0<a<b=c< 1 and hence
a"+b" 4" >a+b+c>2

For a < b € ¢, equality in the original inequality occurs if and only if a = 0
andb=c=1. a

*

32. Let a,b, ¢ be positive numbers such that (a + b + ¢)® = 32abc. Find the
minimum and the maximum of

_ a4+b4+c4
T {atb4o)t

Proof. We will apply Corollary 5 (case p =0, ¢ = 4)

o If 0 <a<b<csuchthat a+ b+ ¢ = constant and abe — constant,
then the sumn a* + b* + ¢* is minimal when 0 < a < b =c¢ and is mazimal
when0<a=b<ec.
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Due to homogeneity, E is minimal for 0<ae<b=c=1 and (a + 2)*>=32aq,
and is maximal for a = b = 1 < ¢ and (¢ + 2)® = 32¢. Since the equation
(z + 2)3 = 32z has the roots 2 and —4 £ 2+/5, it follows that E is minimal
for (a,b,c) ~ (2\/5 —-4,1, 1) or any cyclic permutation, and is maximal for
(a,b,¢) ~ (1,1,2) or any cyclic permutation. The extremal values of the

383 — 165v/5 9

expression E are g and 198" respectively O
*
33. Let xy,29,. .,Zn (n 2 3) be non-negative real numbers such that

Z:rl =1
If m e {3,4,...,n}, then
il PN
Proof (after an idea of Yuan Shyong Oot). Since
2y zzy = (Zﬂfl)2 -5 "4,

we may apply Corollary 6 (case p = 2)
e For0< z; <z29< -+ <z, such that

3m
14— >
+ m_gzﬂn-’ﬂzxs 2

Z =1 and fo = constant,
the sum Z 12923 is minimal when
=+ =2t =0 and Tp40= - =2,

where k € {0,1, ,n—1}.
Thus, it suffices to consider the case

T = =zr=0and r=2441 <ZTp42= "=Zp =Y
On the other hand, taking into account that
2 2
(Ra) =T e+ 2  ne:

and

(Far) =S ot +3(T ) (T mes) 3 X aizses,
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we get

2Z$1x2 =1- Zx%
623:1:323:3 =1~ 3fo+221?

Therefore, the inequality becomes

l+mm—-1)Y 2} > 2m~1)Y 2%,

and

or n
Zf(xt) 2 0:
i=1

where
f(t)=t(1—mt)[1 -~ (m—1)1].
We have to prove that

)+ (n—k-1)f(y) 20
1
fora:-i-(n—k—l)y:1,05x5y,0§x5m. From

f(t) = 6m(m — 1)t — 2(2m — 1),

i 2m—1
it follows that f is convex for ¢t > ——— .
dm(m—1)
Case > ——L_ By Jensen’s Inequality we b
a) a.sea:_3—m(m—_1). y Jensen’s Inequality we have
z+{n—
f(m)+(n—k—1)f(y)2(n—k)f( ( ):
o 1 _(k—n+m)(k—n+m—1
= =R (=) = (n— k)2 20,
because (k — n + m) is an integer number.
b) C 2m -1 Si
asem<m. mce
l-mz>1——mZl  _m-2 >0,

we have
fz)=z(1 -mz)[l - (m—1)z] > 0.
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Consider now three cases in terms of .
Case k <n—m-—1 Since

m(l —z)
n—k—l_l (1-z)=z2>0,

we have f(y) = y(1 - my)[l — (m —1)y] > 0, and hence
f@)t(n-k-1)f(y) 20
Case k > n—m+ 1. Since
(m—1)(1 — z)

l—my=1-

1 (m— 1)z 1 m—-1 2m—-1
“m—2 m-2 " m-2 m-2 3mm-1)
—_L-Jr.l_>0
" 3m(m-—-2) "
we have f(y) = y(my — 1)[(m — 1)y — 1] > 0, and hence
flzy+(n—k-1)f(y) 20.
Cose k=n—m Wehavez+ (m—1)y=1,
f)=ylmy—1)[(m—-y—1]= e zni)_(ll)_zmx)
and
f(x)+(n—k-1)f(y) = f(z) + (m - 1)f(y) =
=z(l-mz)[l - (m-1)z]+ 2( _1111)(_11_-m$) =

_ (m—Qif(_ll—mx)Q >0

This completes the proof Equality occurs if m or m — 1 of the numbers
Zy,%3, .,Tn are equal and the others are zero W

*

34. Let z,y, z,t be non-negative real numbers such that
2yt =1
Prove that

3:3+y3+z3+t3+xyz+yzt+zt:r+t:ry_<_1.
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Proof. Assume that z <y < z <t and apply Corollary 7:
o for0 <z <y< z<tsuch that

22+ 324+ 2242 =1 and 2%+ y® + 23 + £ = constant,

the expression xyz +yzt + stz + txy is mazimal when0 <z =y=2<t,
Consequently, we have to show that

42 + 3 +3z% < 1

<t Let

o) =

for 3224+t2=1,0<z <
f(z) = 422 + 2 + 322t
Taking into account that t' = —_tﬁ, we have
f(x) = 1222 + 3(t2 4 22)¢ + 62t =

_3z{t—=x)(3xz—1t)  Bx(t—x)(1222 1)
B t B t(3z +t)

S ! 0 f 0 ! (2 = 0 and f’ 0 fi
ince f'(z) < Orme(’g__\/ﬁ)’f(g_\/ﬁ)_ and f'(z) > or

1 1 1
T € (ﬁ ,5), the function f(z) is strictly decreasing on [0, m] and
1 1 1
strictly increasing on [m,ﬂ Therefore, f(z) < max{f(O),f(§)}

1
Since f(0) = f(§) = 1, we get f(z) < 1, as desired. Equality occurs

1111
for (z,y,2,t) = (5,5,5,5), and also for z,y,2,t) = (1,0,0,0) or any

permutation thereof a

Remark. Similarly, we can prove the below more general statement:
If x1,29,. .z, are non-negative real numbers such that Z :rf =1, then

) 6
Zx‘l’ + (n—2) (\/1'1'4 I)Zzlxgzg < 1.

( Vasile Cirtoaje, MS, 2006)
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Chapter 6

Arithmetic/Geometric
Compensation Method

The Arithmetic Compensation Method and the Geometric Compensation
Method can be used to prove some difficult symmetric inequalities [10]

6.1 Arithmetic Compensation Method

Arithmetic Compensation Theorem (AC-Theorem). Let s > 0 and
let F(x1,22,...,2,) be a symmetrical continuous function on the compact
set in R™

S={(¢11m21‘ 1In) I1+$2+ '+xn:S, xlzop ,xnzo}
If

F(.T]_,IQ,.T3, -;xn) S

smax{F(Ith? ,$1+$2
2 2

» I3, '7xn) )F(val +I2,.’I3,. -,xn)} (1)
for all (zy,xzy,.. ,2,) € S withz1 > 29 > 0, then

$ s
hd Z 9
F(xy, 29,23, ,xn)glrsnfsan(k,.. k,O,...,O) (2}

for all (z1,22,...,2,) € S.

Proof. Since the function f is continuous on the compact set S, F attains
a maximuin value at one or more points of the set Let (z,,z2, ..,z,) be

267
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such a maximum point [or the sake of contradiction, assume that there
exist two nuinbers z; and x; such that z; > x, > 0; for convenience, let us

consider / = | and j = 2 (hence 21 > z9 > 0)
Accordmg to the hypothesis, there are two cases to consider
a) Case F(xy,29,%3,. ,%,) <
1+ 29 2+ 29
<max{F( IR X3, ..., Zn |, F(0,2y + 29,23, ,Zn)
But is false because F' is maximal at (2,,z9, ,2,), and the theorem is
proved

b) Case F(xy,%2,23, ,Tn)=

1+x9 214+ 2
_—_max{F( : 2 2,13,. ,In),F(0,11+zg,x3,.. ,xn)}.

)
The function F attains again its maximum value at (y;,y2,. ,yr) with
. . ) + 2
y: = x; for i > 3 and either y; = yg = ———— or y; = 0 and y2 = 21 + 22.

If there are not two numbers y; and y; such that y; > y; > 0, then the
proof is finished. Otherwise, we iterate the preceding process, eventually

8
finding & maximum point (z;,22, .,2n) such that all z; € {O’E}’ where
1<k<n

Remark 1. In order to prove the condition (1), it suffices to show that
z1 > 9 > 0 and

ryt+2x2 1+ 29
F(Il,x27137' 7$n)> F( 9 ’ 9 » L3, . 1 Tn

mvolve

F(zy,22,23,.. ,24) < F(0,21 + z2,23,. ,Zn).

Remark 2 The AC-Theorem holds by replacing (1) and (2) with

1'1(11:1,332,1'3, 7'7"11.) 2

zmax{F‘( E

X1 tZy IT)+To
272

, 3, . ,In),F(0,$1+I2,$3, ,xn)} (1)

and

S S
Pzy, 20,33, . an) > min F(S, 2 >
F(‘I"ha’27x3a ’xn)_lg}clgnF(k’ kao" 10)1 ( )
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respectively In order to prove the condition (1'), it suffices to show that
) > &9 >0 and

r +22 T1+22
2 ! 2

F($1,$2,$3,. '1$n)<F( 1y L3, - 73:1'&)

involve
F(zy,23,23,. .,2p) 2 F(0,2) + 22,23,...,%n)

6.2 Geometric Compensation Method

Geometric Compensation Theorem (GC-Theorem) Let f(t) be @
continuous function defined on [0,00) such that for any couple (z,y) with
x >y > 0, the inequality holds

f(z) + f(y) < max {2f (yzy) e + b},
where a = f(0) and b = tlim f(t)
Let p > 0, let x),29,...,z, be positive numbers such that
T1Z3...Zn = P,

let ky, ko € {1,2,. .,n—1} and let

0= k,Tka;én [kla + ka + (Tl - k] — kg)f(c)] .
c>0

Then,
JF(z1) + fx2) + - + f(zn) < max{,nf(p)}.

Proof. Here we will prove this theorem only for the case in which the
inequality in the hypothesis is strict, that is

f(x) + f(y) < max {2f (\/zy) ,a + b}

When the inequality is nonstrict, the proof is similar to one from the
AC-Theorem
Denote by D the supremum of the function

F(z1,22, . zn) = f(z1) + f(z2) + - + f(2n)
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on theset S={(x,,22, ,2Zn) 2129 .2, =p", >0, ,2,>0}inR"
Suppose first that the supremum is attained at (z1,z2,.. ,z.) € S. We
infer that r; = 29 = -+ = z, = p. For the sake of contradiction, we

assurne that there exist two indices ¢ and j such that z; > x; > 0 From
the hypothesis it follows that the function I increases when the numbers z;
and z, are replaced either by z; = ,/z;z; and = = /Z:T;, or by z; — 0
and z; — oo (such that zjzi = z;z;) Consequently, F' is not maximal at
(z1,z2, ..,Zn), which is a contradiction

Suppose now that the supremum D is not attained at a point of S. Thus,
we may write D in the form

D=kia+kb+ f(z1)+ + f(Tn-ti—k2)»

where k), ko € {1,2,...,n—1} such that ky+kg < n,and xy,. ,Zp_f 4, >0
We have to show that ) = -+ = z,_, _,. Indeed, if there exist two indices
i,j € {l,. ,n—ky—ko}suchthat z; > z; > 0, then the sum f(z;) + f(z;)
increases when the numbers z; and z; are replaced by either z} = | /7;Z; and
T’ = /%%, or z; — 0 and x; — oo (such that rix! = z;x;). Consequently,

J )
D is not the supremum of F, contradiction. O

6.3 Applications

1. If a,b,c,d > O such that a + b+ ¢+ d =4, then

1 N 1 N 1 N 1 <1
2) 5—abc 5—bed H5—cda 5—dab ~

; 1 N 1 N 1 1 1_
) 4 —abc 4 —bed 4—cda 4 — dab 11

e

( Vasile Cirtoaje, MS, 2005)

2. Let m and n be integer numbers such that n > 3 and 1 < m < n, and let
zy,23, . ,Zn be non-negative numbers such that ) + 2o+ -+ zp=n If

n m
P> (;) , then the function

1

— Xy Tiy - T

F(ﬂ:],xg,...,a:n): Z

1<i < <im<n P

m
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n
is maximal for £y = -+ = 2 = — and 244 = -+ = zn = 0, where

k
ke {mm+1,.. n}
(Vasile Cirtoaje, MS, 2005)

3. Let a,b, c,d be non-negative real numbers such that a + b+ c+d =1
Prove that

a)  4(a®+ 8 + A+ d®) 4 15(abc + bed + cda + dab) > 1;
b)  11(a®+ 5% + ¢® + d%) + 21(abe + bed + eda + dab) > 2.

(Vasile Cirtoaje, MS, 2006)

4. If z1,z9, ..,zq (n > 3) are non-negative real numbers, then

a) Zm?+32x112$3 > lezg(:rl + z3);

n—1 3
b) 5 Zm?+m2$lxzmgz Z'xlmg(zl + z3).

(Vasile Cirtoaje, MS, 2006)

5. Let a,b,c,d be non-negative real numbers.
a) If a® 4+ b% + ¢® + d% = 2, then

a® +b* + A + & + abe + bed + cda + dab > 2;
b) If a? + % + ¢® + d? = 3, then
3(a® + b + & + d*) + 2(abe + bed + cda + dab) > 11
(Vasile Cirtoaje, MS, 2006)

6. If a,b,¢,d > 0 such that a + b+ ¢+ d = 2, then

1 N 1 N 1 N 1 >16
14+3a2 14302 14832 14342~ 7°

7. If 21,29,...,x, are non-negative real numbers such that

ry1+z2+ - +In =35,

then .
1 1 1 ks

+ >n— —

l-l-a:? 1+:1:%+ +l+:1;,21_n 1rgnk?'gxnk2+s2

( Vasile Cirtoaje, MS, 2006)
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8. Let s >0, and let 2,22, . ,z, be non-negative real numbers such that
Ty +2z9+- -+ 1z, =5. Then,

oy k
(1+:1:f) (1+:1:§)...(1+:r,%) S_lrer’?an(l-i-%g) .

(Vasile Cirtoaje, CM, 8, 2005)
9. Ifa,b,¢e,d > 0such that a+b+ ¢+ d =1, then

(1+ 2a)(t +2b)(1+2¢)(1 + 2d) _ 125
1-a){l-b(l-c(l-d =~ 8

10. Let z1,z9,..., T, be non-negative real numbers such that
z1+2z9+ -tz =1

If m > —1, then

n

1+ mz; N (k—i—m)k
H————_>_ min { ———) .
im1 1—-.’1’:,' 2<k<n k—1

(Vasile Cirtoaje, CM, 7, 2004)

11. Let z1,zs,...,Z, be non-negative real numbers such that

2
R R T

Then
Z ZiZ; S_ _1_
1<i<i<n (1 “33;')(1 - 112]') 4
(Vasile Cirtoaje, MS, 2005)
12. Let x;,z2,...,Zn be non-negative real numbers such that

z1+2z2+- -t 2n=1

and no n — 1 of which are zero. Then

I;iZj n
Z (1—2)(1 —z4) z 2n—1)

1<i<j<n

(Gabriel Dospinescu, MS, 2005)
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13. If a,b,¢,d > 0 such that a + b+ c+d = 4, then
(14 3a)(1+ 3b)(1 + 3¢)(1 + 3d) < 125 + 131abed.
(Pham Kim Hung, MS, 2006)
14. If a,b,¢,d > 0 such that a+ b+ ¢+ d = 4, then
(14 3a%)(1 + 36%)(1 + 3¢®) (1 + 3d?) < 255 + a?b?c2d2.

(Vasile Cirtoaje, MS, 2006)

15. Let z1,z2,. .,z, be positive numbers satisfying
1
Yrize.. zp=p< n—1
Prove that
1 + 1 + N 1 < n
1+ x4 14 29 l+z, " 1+p°
16. If ay, as, ..., a, are positive numbers such that
n
Va1ay...0q =p < \/n__j*‘l,
then
1 1 1 n

+- +

At a2 (14 a) (ta) ~[T+a7

6.4 Solutions

1. Ifa,b,c,d > 0 such that a + b+ c+d = 4, then
1 1 1

< .
a) 5—abc+5—bcd+5-cda+5—dab_1’
1 1 1 1 15

b <
) Tt T T i i S T

Proof. If at least two of the numbers a,b, ¢, d are equal to zero, then the
inequalities are clearly true. Assume now that at most one of a,bed is
equal to zero.
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a) Denote the left hand side of the inequality by F(a,b,c,d) We will
show that F(a,b,c,d) > F(t,t,¢,d) involves F(a,b,c,d) < F(0,2t,¢c,d) for
a+b

a>b>0and t = —5 - Then, by AC-Theorem it follows that

-

F(a,b,c,d) < max {F(4,0,0,0),F(2,2,0,0),F (g- , % . % 0}, F(1,1,1,1)}

Since £'(4,0,0,0)=F(2,2,0,0)=

U'II.h

JF = ==0]j==—and F(1,1,1,1)=1,
333 355 (1,1, )
we get F'(a,b,c,d) <1

Let us show now that F(a,b,c,d) > F(t,t,¢,d) involves F(a,b,c,d) <
F(0,2t,¢,d) fora > b > O and t =
F(a,b,c,d) > F(t,t,¢,d) as

2(5 — ted) 2 S
(5 —acd)(5 —bed) 5 —ted

A
> \5-%c 5-abe 5—12d 5—abd/’

Dividing by the positive factor t? — ab, the inequality becomes

2c%d? c d
(5—acd)(5—bed)(5—ted) > (5-—abc)(5—t2c) + (5—abd)(5~—t2d)

5 Write the given inequality

Since

¢ d c n d
(5—abe)(5—t2c) + (5—abd)(5-t2d) > 5(5—t2c)  5(5-—t%d)’

we get

2c%d? S c N d (1)
(5 — acd)(5 — bed)(5 — ted) ~ 5(5—t%¢)  5(5 — t1d)
Similarly, write the required inequality F(a,b,¢,d) < F(0,2t,c,d) as

follows

11(11)+(1+1)1+1
(5——abc_g)+ 5—abd 5 5—acd = 5—bed 5—2ted’

abe abd 2(5 — ted) 2(5 — rcd)
1 + <
5(5—abc) = 5(5—abd) (5 acd)(5 —bed) T 5(5 — 2tcd)
c d 2c2d?(5 — ted)

575 —abe) | 5(5 —abd) — 5(5 — acd)(5 — bed)(5 — 2ted)
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Since
¢ 5—ted 5

5—2ted — 5—ted’

it suffices to show that

¢ d < 2c2d?
5(5—abc) | 5(5 —abd) — (5 —acd)(5 — bed)(5 — tod)

This inequality immediately follows from (1). Equality occurs if and only if
a=b=c=d=1.

b) Let
1 1 1 1
Flab,ed) = T T hed Y T—cda T 1—dab
. atb a+tbd
As in the preceding case, we can show that F(a,b, ¢,d) > F (T’ —5 6 d)

involves F(a,b,¢,d) < F(0,a+b,¢,d) for a > b > 0. Then, by AC-Theorem,
we have

] 7

Fla,b,e,d) < ma.x{F(4,0,0,0),F(2,2,0,0),F( ,o) ,F(1,1,1,1)}.

TN
RTINS
RIS

. 4 4 14 15
SmceF(tl,0,0,0):F(2,2,0,0)=1,F( )

§,§,§,0 = ﬁand F(l,l,l,l) =

3 the desired inequality follows Equality occurs when one of a, b, ¢, d equals
4
0 and the others equal 3 a

*

2. Let m and n be integer numbers such that n > 3 and 1 < m < n, and let
Z1,%2,. .,Zn be non-negative numbers such that 21 + 2o+ - + 2z, = n. If

n m
7> (E) , then the function

1
F(xlyxz’ "!IT!) = Z I I
1<i < <im<n P~ TuTia -+ Tipy
. ) n
is marimal for 2y = . = 74 = T oond Zpyy = o = 3, = 0, where

ke{mm+1,  n)
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Proof. For p > (%) , we have

(zi, + Zip +

"+Iim)m (n)m
<\|\— <
m > p

i Zi, Ty, < —

If at least n~m+1 of the numbers z; are equal to zero, then the function F is
minimal Therefore, we will assume now that at most n —m of the numbers
x; are equal to zero; that is, at least m of the numbers z; are strict positive
According to AC-Theorem, it suffices to show that for x > y > 0 and

*+ .
t= —; y’ the inequality F(x,y,23, ,zn) > F(t,t,23,. .,z,) involves

F(z,y,z3, .,zn) < F(0,2t,23, . ,Zy)
For convenience, let us denote

Ai =Ty Lip_2s Bi =T Lipy_1> C‘i =iy -.Tq

m

and

> f(A) = > f (=, Zi o),

3<i; < <ip—2&n

Zf(Bl)z Z f(Iil' "Tim—n)ﬁ

3<ih < Lim-15n

Y f(Cy) = > [z xi,),

SS‘H < <im Sn

wlere f is an arbitrary function.
We have

1 1 1 1
Flowes en)=3 0 oo gt 2 50, +Z—yﬁ+2—=
2(p—tB;)

1 —
- pr:ryAi 2 (p—=zB:)(p— yB Z
1 2
F(t,t,l':}, !mn)zzp_t2A1+Zp*tB1+Zpucl

and

1

n—-2\1 2(p —tB;)
POtz o) = (03 ) s+ T s+ o

Thus, we may write the inequality F(z,y,x3, ,Zn) > F({,t,23, .,Zs)in
the form

2(p — tBy) 1
2. p——a:B,-)(p——yB,-)—Z “tB Z( — 12 A; p—a:yAs)
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After combining and dividing by the positive factor t2 — 2y, we obtain

282 A;
2 (p—zB;)(p ~ yB:)(p—1tB;) > 2. (p—zydi)(p—t2A;)

Since at least m ~ 2 of the numbers z3,...,z, are non-zero, we have

Ai Ai
2. (p—zydi)(p— t*A;) > 2 p(p — zyA;)

Consequently,

2B; A
2 (r—2B)(p—yB)(p—1B:) ~ Z:;v(p—ncyAi)' (2)

Similarly, we may write the required inequality
F(z,y,z3, .,zn) < F(0,2t,z3, ,z)
as follows-
1 1 2(p—tB;) 2(p —tBs)
— = =)+ ). o
2 (P—-TUA{ P) Z (p—2B;)(p—yBi) ZP(P“%B:')

T zyhi  _ 5 22y B} (p — tB:)
p(p— xyAs) — “~ plp—2B;)(p— yB:)(p - 2tB;)’

A; 2B?(p — tB;)
2 p—zyA; <2 (p—2B:)(p—yBi)(p—2tB;)

Since
p—tB; 5 _P

p—2tB;, “ p—tB;’

it suffices to show that

; 2
Z A; < Z 2p B
p— zyA; (p—zBi)(p—yB:)(p—tB;)
But this inequality immediately follows from (2) O

From the above statement, we can deduce the following results.
Proposition. Let m and n be arbitrary integers such that

n23 and 1 <m< n,
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and let
()~
m
q= ™
n m
() (5) -
mj\n
Let zq,29,...,2, be non-negative numbers such that 1 + 22+ -+ 2z, = n,
and let !
Flzy,zg,...,2n) = Z

P— 2% ... Ty,

I1<i1 < <im<n

a) For p > q, we have

F(xl';m?:' amn)SF(l,ly,l),

b) For (%) < p < g, we have

n
—,.

F(z,z2,...,%n) SF(
m

3210: 70)
m

Corollary 8. Let aj,as,. .,a, be non-negative real numbers such that
a1 +as+ -+ an = n, and let

F( ) 1 4 1 I 1
ai,as,.. ,an)=
142 Gn p—agaz ..ap pP—azayg...aj p—aiaz...an_1
If 1
1 \"~ n—1)e,_
en_l—(1+ ) and q=( Jen—1
n—1 L — En-1
then
n
a) F(ay,az,...,an) < , forp 2 q;
n—1 1
by F(ay,a2,-..,an) < + , forenc1 < p<g.
4 P—€n-1
Corollary 9. Let ai,az,...,an be non-negative real numbers such that

ar+ay+ -+ ay =n, and let
1
F(a,az,. ,an)= Z e,

Then
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F <n(n~~-1) >n(n+1)
a) (01,02, ")an) = 2(p 1) ’ fOT P2 2 )
(n—2)(n+1) 4 n? n(n+ 1)
b) Fay,az,...,an) < % 4p*n2,for-4—<p_<_-——2—,

For p = n + 1, from Corollary 1 we get the following nice statement:
o Letay,ag,...,an 20 (n >4) such thatay +ag+ -+ + an =n. Then

1 1 1
+ -+ <1
n+4l—agaz . an n+l—azas . a; n4-l—ajay . an_1

*

3. Let a,b,c,d be non-negative real numbers such thata+b+c+d = 1.
Prove that

a) AP+ + B+ B 15(abe + bed + cda + dab) > 1
b) 11(a®+b* + S+ &) 1 21(abe + bed + cda + dab) > 2
Proof. Let p and ¢ be real numbers, and let
F(a,b,c,d) = p(a® 4 8+ & + &) + qabe + bed + eda + dab)
We claim that
F(a,b,c,d) >
s nfr0.000, (4 400). F (3L 0) (L L)) o

p 3p+gq p+q}

=mm{Pa4, %7 ' 16

On this assumption, in the case a) with p = 4 and ¢ = 15, we get

F(a,b,c,d)?_min{tl 11, 12}:1,

which is in fact the desired inequality. Equality holds if one of a b ¢.d is

LI B |

, and also if two of a,b,¢,d are zero and the

(7N

zero and the others equal

others equal -

Similarly, in the case b) with p = 11 and g = 21, we get

Fla,b,c,d) > min{ll,—lq—l,Q,Q} ~ 2
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Equality holds if all numbers a, b, ¢, d equal n and also if one of a,b,¢,d is

1
zero and the others equal -

In order to prove (3), we will use AC-Theorem, showing that the
mequality F(a,b,ec,d) < F(t,t,c,d) involves F(a,b,c,d) > F(0,a + b,¢,d)

+ b
fora>b>0andt = 22——. The inequality F(a,b,c,d) < F(t,t,¢,d) is

equivalent to
p(a® + 6% — 26%) < g(c+ d)(1* — ab),

3p(a+ b) < g(c+d). (4)

On the other hand, the required inequality F'(a,b,¢,d) > F(0,a- b,c,d) is
equivalent to
P [a3 + 6 —(a+ b)s} + gab(c+ d) 2 0,

or

g(c+ d) > 3p(a + b)

Clearly, (4) yields the last inequality. a
Remark The inequality a) has the homogeneous form
4(a3 + b3 + & + d®) + 15(abe + bed + cda + dab) > (a+ b+ c+ d)*.

Since
(a+b—+—c+d)3 = Za3 -{—SZab(a—{-b)—{—GZabc,

we get the inequality
S +3) abe> ) abla+b).
For d = 0, this inequality transforms into the third degree Schur’s Inequality
a® + 6% + & + 3abe > ab(a + b) + be(b+ ¢) + ca(c + a)
Similarly, we may write the inequality b) in the homogeneous form
Zas + Zabc > §Zab(a + b).

*
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4. If 1,29, .,zn (n > 3) are non-negative real numbers, then
a) Zx?—l—Slexgxg > lexg(xl + z3);
-1
b) n xy + lexzrg > Z:I:]xg(rl + 232)

2

Proof. For convenience, let us denote the sum

E Tiy Tiy - I,‘j

i+1<i<ia< <i;€n

by in“xi” ...zi+j. Let p and g be real numbers, and let

Fzi,20, ,2a)=pY 27+qY zizor3— Y 2122(21 + 22)

Since
S eimalen 20 = (L) (T) - ot
we get
Flzy,z2,...,23)=(p+ 1) Zx? +qz:z:1:z:2:z:3—(22:1) (fo) .
If z1,29, , 2z, are zero, the inequality is trivial Otherwise, due to homo-

geneity, we may consider that Z z; = 1. We claim that
F(xy, 20,23, ,2,) < F(L,t,23,. ,zp)

involves
F(zy,22,23,...,2,) 2 F(0,2( + z2,73,...,29)

T + 22 .
forzy >29>0and t = . Then, by the AC-Theorem it follows that
Flzy, 29,23, . ,20) > 1212nf(k)
where 6(p + 1) + q(k — 1)(k — 2) — 6k
_S(p+1)+q(k—1)(k-2) -
. 1
is the value of F forzy = ..« =z}, = e and zg4y =+ -=1z, =0.

In the case a), with p=1 and ¢ = 3, we get

(k=2)k=3)

I = S22




282 6 Arithmetic/Geometric Compensation Method

for k € {1,2,...,n}, and hence F(x,25,23, .,2,) > 0. Equality holds if
two or three of the numbers 2y, 2z9,.. ,z, are equal and the others are zero
n—1
In the case b), with p = 5 and ¢ = - we also have
n —

4

F(z(,z2,23,.. ,2n) >0, because

(k—n)k—n+1) >0

TR =g =y =

Equality holds if either all numbers z;,z3,. .., 25 are equal or n — 1 of them
are equal and the other is zero.
Taking into account that

Y rizazs =z122 Y z3 + (31 +22) ) T3x4 + Y 232435,
the inequality F(xy,z9,23,.. ,zn) < F(1,1,23, ..,2s) is equivalent to

(p+1) (a:? + 23— 213) + g(z1z2 — t7) ng—
(mi 4zt Y as) (22 4 28— 26%) <O
Dividing by (21 — z2)?, it becomes
(3p+ 1)(z1 +22) < (q+2) ) 23 (5)
On the other hand, the required inequality
F(zy,z9,23,. ,zn) > F(0,2t,23,. .,za)
1s equivalent to
(p+ 1) (:z:zl3 + rg—8t3) + qzyz9 Z:’E’g— (1'1+$2+Z :113) (:z:f + x%—4t2) >0
Dividing by zj22, we get the inequality
(a+2) Y23 2 (3p+ 1)(w1 +22),
which immediately follows from (5)
m— 1 3

5 andq:m—_—.),weﬁnd

4 o

Remark Forme {3,4,. .,n},p=

E—m)(k—m+1)
f(k):( 2k7-)((m—2) '
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Since f(k) > 0 for k € {1,2, ,n}, it follows that the following inequality
holds for any m € {3,4, ,n}
m—1

3
5 23 + —3 > xzazs 2 Y maa(zy + 22). (6)

Equality occurs if m or m — 1 of the numbers z;,z9,.. ,2, are equal and
the others are zero.

S mimle +a2) = (L) (Do) - Tk

the inequality is equivalent to

mTHZx?-}-%Zx;xgng =) (3=1). (7)
Since 3722 = (Y1) - 23" 242, and
St = 8w + (D) -3 () (D)
we may write the inequality in the form
(o) + s Dmmazn 2 7 (L) (D).

Notice that the equivalent inequalities (6), (7) and (8) are valid for
m e {3,4, .,n}, but are not valid if m € (3,n) is not integer O

Since

*

5. Let a,b,c,d be non-negative real numbers.
a) Ifa® +b% + ¢ +d? = 2, then

a3+ b2+ 3 + d® + abe + bed + cda + dab > 2,
b) If a® + b2 + ¢ + d2 = 3, then
3(a® +b° + ¢ + d®) + 2(abe + bed + cda + dab) > 11
Proof. a) Let

Fla,b,e,d) = a® 4+ 63 + 3 + d® + abe + bed + cda + dab.
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. a® 4+ b?
We claim that for ¢ > b > 0 and t = , the inequality
F(a,b,c,d) < F(t,t,¢,d) involves F(a,b,c,d) > F(O, \/ﬁt,c,d). We see
that

b et d? =121 2 2 4 o2
and

a2+b2+c2+d2:02+(\/it)2+c2+d2.
Then, by AC-Theorem we have

F(a,b,c,d) >

2mn{F(\/§,0,0,0) ,F(l,l,0,0),F(\/g, \/g \@ o),zr(?, ? ? f)}z

= mmn {2\/5,2,%6,4\/5} =2,

]

from which the conclusion follows.
The inequality F(e,b,c,d) < F(t,t,c,d) is equivalent to

a® + 63— 26% < cd(2t — @ — b) + (¢ + d)(t* — ab),

or
al + bt + 4abt? cd c+d

9
Q(a:"+b3+2t"’)<a+b+21,Jr 2 )

Similarly, the required inequality F(a,b,c,d) > F (0, V2, ¢, d) is equivalent
to
cd(a+b-— \/§t) + ab(c + d) > 2v2t3 — a3 - B3,

or
cd +c+d> 3abt?
a4+ b+ /2 2 T a3 b3 4 2/

To prove this inequality, it suffices to show that

ed c+d 3abt?
+ > X
a+ b4 2t 2 T a3 4 b3 4283

Taking account of (9), we have to show that

at + bt + dabt® > 6abt?
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This inequality 15 equivalent to
(a —b)*(a® + ab+ b%) > 0,

which is clearly true IZquality occurs when two of a, b, ¢, d are zero and the
others equal 1

b) Let
F(a,b,c,d) = 3(a® + b3 4+ 3 + d®) + 2(abe + bed + cda + dab).
As in the preceding case, we can show that F(a,b,¢,d) < F(t,t,c,d) involves

F(a,b,c,d) > F(0,v2,c,d) for a > b >0and t =

AC-Theorem we have

Then, by

[\

F(a,b,c,d) >

2m'm{ (v3,0,0,0), (\[\[ ),F(l,1,1,0),F(—\g—§,——\£—§,l§,lé_§)}:
=m'm{9\/§,9\[ 11, 15‘/_}:11,

from which the conclusion follows.

The given inequality F(e,b,c,d) < F(t,t,¢,d)} is equivalent to
3(a* + b* + 4abt?) < 2cd

2a3+63+213) T a+b+2t

+c+d, (10)

while the required inequality F(a,b,c,d) > F (0, Vv2t,c, d) is equivalent to

2ed tetrd> Oabt?
—_——+c
a+ b+ V2t T a3 + b3+ 223

In order to prove this inequality, it suffices to show that

2¢d tetd> Oabt?
a+b+ 2t = a3 b3 4237

This inequality follows from (10) and
a4+ b* 4 dabt? > 6abt2,
which is equivalent to
(a—bY(a® +ab+5%) >0

Equality occurs when one of a,b,¢,d is zero and the others equal 1. O



286 6 Arithmetic/Geometric Compensation Method

*

6. Ifa,b,c,d >0 such thata+b+c+d =2, then
1 1 1 1 16

> — .
1+3a2+1+3b2+1+3c2+1+3d2"_7
Proof. Let
1 1 1 1
Fla,b,c,d) =
(2,6,¢,d) 1+3a2+14—:’.1;2+1+‘3,c2+1+3a!2

_ a+b .
We claim that fora > b > cand t = , the inequality F(a,b,c,d) <

F(i,t,c,d) involves F(a,b,c,d) > F(0,2t,c,d). Then, by AC-Theorem we
have

F(a,b,¢,d) >
< min{ F(2,0,0,0), F(1,1,0,0), F (

_ _1{40 5 16 16}_16
S Ty T

The inequality F(a,b,c,d) < F(t,1,c,d) is equivalent to

1 + 1 < 2
14+3a2  1+3b2 " 143¢2°

VR )

or
(6152 -1+ 301))(t2 — ab)

(14 3a?)(1 + 3b62)(1 + 3¢2)
Since t2 — ab > 0, we get

6t2— 1+ 3ab< 0 (11)

Similarly, the required inequality F(a,b,c,d) > F(0,2t,¢c,d) is equivalent to
each of the following

1 1 1
Sl4—
322 Tivae = YT sy ne
ab(l — 3ab — 18abt?)
(15 3a2) (1 +37)(1 + 122) =
1

. _1-6t2>0
3ab -
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Using (11), we have

1 s 1 (1 — 3ab)?
et - > - = 0
3qp L T8 Z gy a2 3ab

The last inequality is strict because (11) yields 1 — 3ab > 6t > 0 Equality

occurs when a=b=c=d= 3 and also when one of a,b,¢,d is zero and the

2
others equal 3 O
*
7. If z1,z9, . ,2, are non-negative real numbers such that
ry+zo+ -+ 2 =5,
then
1 1 N L o ks?
A n — —_
1+xf+1+x§+ I +x2 = 1<k<n k2 + 52
Proof. Let
1 1 1
F NP = - .
(I],:'CQ, ,CU) 1+2’:%+1+I%+ +1+$%
We have to show that F is minimal for
1
TL=co=ap= g and x4 = =12, =0,

where k€ {1,2,...,n}. By AC-Theorem, it suffices to show that for z >y >0

z+
and ¢ = ——?’—,, the inequality

2
Fz,y,z3,...,2,) < F(t,t,23,...,7,)
involves
Flz,y,x3,.. ,z,) > F(0,2¢t,z3,...,2,).
To this effect we can be use the same way as above. a

Remark. From this application, we can deduce the following result.
e Let 21,22, . ,zn be non-negative real numbers such that

Ty +xe+ -ty =,
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and let
t 4 t + N t
1+2? 1423 P4 x2°

a) Ifk € {1,2,...,n—1} and \Jk(k— 1) < s < /(k(k + 1), then

kn 4 (n — k)s?

F(xl’x'Z)-' :xn) =

F($l1$27-'-1xn) 2

k*4s2
b) If s > \/m, then
n3
F(ry,z9,...,2n) > Tl
*
8. Let s > 0, and let z,,z9,.. ,zn be non-negative real numbers such that

zi+x9+ - +xn=35. Then,

25\ k
(1+xf)(1+x§)...(1+m%)Slrsrl’?g(n(l-%-%) .

Proof. Let
F(zy,22,...,2za) = (1 +27) (1 +23) ... (1 +23).

x+y

By AC-Theorem, it suffices to show that for z > y >0 and t =

F(z,y,z3,...,2a) > F(t,t,z3,...,Zn)

involves
F(z,y,z3,...,2n) < F(0,2¢t,23,...,25)
Since
F(z,y,z3,...,22) — F(t,t,23,...,zn} =
= (t? —zy)(2 —zy — t2) (1 +:1:§) . (1 +xi)
and

F(z,y,z3,...,2,)—F(0,2t,23, ..., 2n)=zy(zy—2) (1+:c§) - (1+:1:31) ,

we have to show that 2 — zy — 2 > 0 implies zy — 2 < 0. Indeed, we have
2—2y>t:>0. O
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*

9. Ifa,b,c,d>0 such thata+b+c+d=1, then

(1+2a)(1 +26)(1 +2c)(1 +2d) _ 125
(I—a)(l—=b)(l—-c)l—-d) — 8 °

Proof. Let us denote the left hand side of the inequality by F(a,b,c,d)

b
We claim that for a > b > 0 and t = , the inequality F(a,b,c,d) <
F(t,t,¢,d) involves F(a,b,c,d} > F(0,2t,¢,d). Then, by AC-Theorem we
have

F(a,b,e,d) >
1 1 1 1 1 1 111
< mi i - . oo ) g
_mm{F(2,2,0,O),F(3,3,3,O),F(4,4,4,4)}
125 125
mm{l, 3 , 16 3

The inequality F(a,b,¢,d) < F(t,t,¢,d) is equivalent to

(14 2a)(1 + 2b) 14 2t\2
(1 —a)(1-1b) (1—:‘,)’

or

3(41 — 1)(t? — ab)

T-0(-ai-5 <"

1
Since t? — ab > 0, it follows that ¢ < 1 On the other hand, the desired
inequality F(a,b,c,d) > F(0,2t,c,d) is equivalent to

(L+2)(1+25)  1+4t
(I—a)(1-b) = 1—2"

or
3(—4t + 1)ab
T2 -a)i-p 2°

) 1
Since t < 1 the inequality is clearly true. Equality occurs when one of the

1
numbers a,b, ¢, d equals 0, and the others equal 3 0

*
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10. Let zy,13,...,T, be non-negative real numbers such that
ri+ze4 =1

If m > —1, then

bl ma ) (k + m)k
H > mn { ——— | .
tL l—2; Tocksn\ k-1

i=1
Proof. Let
21+ may
F(Il1221 '1xn):H
1o
We have to show that F' is minimal for
|
T = ::ck=E and zpy =+ =z, =0,

where k € {2,3,. .,n}. By AC-Theorem, it suffices to show that for
r+y . .

r>y>0andt= —5 the inequality
F(z,y,z3,. ,2a) < F(t,t,23,...,2n)

invalves
F(Q:,y,ﬂ?s, s 1xn) 2 F(O, 2t,$3, e ,:z:n).

We may write the inequality F(z,y,23,...,za) < F(t,t,23,...,25) as

follows

(1 + mz)(1 + my) 14 mt\?

(=z)(1-v) <(=%)

(m + 1)(2mt — m + 1)(* — 2y)
(1=t —z)(1 - y)

Since 12 — 2y > 0, we get 2mt —m + 1 <0 Similarly, the desired inequality

<0.

F(I,y,$3, 13711) 2 F(O, 2t1 x3, * 1xn)

is equivalent to
(1 + ma)(1 + my) S 1 +2mt

(1-z)(t—-y) — 1-2t

or
(m + 1)(—2mt + m — 1)zy

(1=2t)(1 —z)}(1 —y)
The last inequality is true because 2mt — m+ 1 < 0. O

> 0.
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Remark. From this application, we can deduce the following result
o Let my be the positive root of the equation in m,

1 4+ my *+! 1+ m\*
(1+57) =(+355)
Then,
a) VB=ma>m3>- - >mu > 1;

N1+ may
b) H]( l—x,-t) > (m +2)%, for m > mg;
i=

1+mx,-) S k+m
1—x; _(k—l

k
) Jformp <m<my_yandke {3,...,n—1};

...
.I_L
——~ TN

o1l 4 mz; m+n\"
d > for — < —1-
)E l—xi)—(n—l) yfor =1 <m <mnp_
*
11. Let z),xz3, ,z, be non-negative real numbers such that
2
T+ 22+ "+$n:§
Then
)3 g1
1<igi<n (1—z)(1—2z;) — 4
Proof. Let
F(x].)x?r"';xn) = Z =i

1<i<j<n (1 - xt)(l - 3:_7) '
. zT+y . .
We claim that forz >y >0and t = — the inequality

Flz,y,z3,...,2q) > F(t,t,23,...,2s)

involves
Flz,y,z3,...,2n) < F(0,2t,xz3,. .,zy).

Then, by AC-Theorem, we have

9 2 2k(k—1)
FQ‘,‘ ,3: yueey < (— ‘o — )= a1 ~ 5
(x1, 2 xn)'—lrgnl?gan 3% "3k’0""’0 1r5nl?gxn 3k-22"
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Since
2k(k—1) 1 _ (k —2)? <1
(3k—2)2 4 4(3k-2)2 — 4~
the desired inequality follows
The inequality F'(z,y,z3,...,z) > F(t,t,23, . ,zy) is equivalent to

Ty _ t2 (:c Yy 2t \ = T
(1-x2)(1-y) (1—t)2+ 1—:c+1-—y l—t)jgal—

or

t? — zy 9t—1+‘>(1—ti
(1-2)(1—-y) (1 -2 |~ - 41—z

Since 12 — zy > 0, we get

2—1+2(1-8)Y xjx_ > 0. (12)

The required inequality F(z,y,zs3,...,zn) < F(0,2t,23,...,2p) is equiva-
lent to

Ty T v 2t ) Tj
- <0
(1—:1:)(1—y)+(1—$+ -y  1-2t jgl—:cj -

or

Ty noo.
=2)(1-y)(1-2) [1 AL ) 1—2,} 0.

Taking account of (12), this inequality is clearly true

1
Equality occurs if and only if two of z; are equal to 3 and the others
are zero 0

Remark 1. From the above proof, we can formulate a more general state-

ment.
e LetO < s <1, letz),xa,.. ,zn be non-negative real numbers such that
T+ 22+ -+2xp=35 andlet
;T4
F(:L'l,xg,.. a:n) =
’ 15;3'511 (1—.’13.")(1 _'T_‘)')
Then,

8 k{k—1)
O 0) =T me iy

1t )

) < F(
F(xl)m27 ,xn) — lr‘?kaé(n

el IR
7| »
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Remark 2 For z; + z2 + - -- + , = 1, the inequality holds
Qlixj
<1
2 (1 —z:)(1 — =)

1<i<j<n

Indeed, assuming that z; > zo > -~ > z,, we have

Z;x, 1 e —
Z (1—z:)(1 — z5) = (1 ~xz,)(1 — z) Z iLj

1<i<j<n 1<i<j<n

B 1— (= + 2% +- +x%)

T2l —z)(1 —z9)

1-— (:v'f-l-x%) (zi + 22— 1)?
< =1-
2(1——.’51)(1—22) 2(1—231)(1—3:2)

Under the assumption z; > 29 > - > x,, equality occurs if and only if
I3 = r=Ip = 0.

<1l

*

12, Let z),x2,.. ,xn be non-negative real numbers such that
Ty tx24 - =1

and non — 1 of which are zero. Then

Z I-,;Ij > n
1<igcj<n (I—z)(1 - z;) ~ 2(n—1)
Proof. For n = 2, the inequality becomes equality Consider now that n > 3.

3
We will show that the inequality holds if one of z; is larger than 1 Indeed,

3
if 2y > 1 than
n
35133_7 1L'1$J x)
> T, =
)y > - e
=2 o —1)

3
Consider now that 0 < z; < 1 fori=1,2, .,n. Let

LT

F(:‘clyIQ: ')xn): Z

1<icien (=2 (1 —z5)
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. -+ )
We claim that for z>y>0and t = —2g , the inequality

F(z,y,z3,...,2n) < F(t,t,23,...,Zn)

involves
F(z,y,z3, ,zp)2> F(0,2t,23,...,2,).

(4% ]

Since the symmetric function F(zy,z9,...,2,) is continuous for 0 < z; < 7
by AC-Theorem we have

. 1 1
F(zy,22,. ,2n) szsnklgnF(E,...,E,O,. ,0) =

= mi k = n
= 2<ken 20k—1) 2(n-1)’

which is just the required inequality.
From the preceding proof, we may assert that the given condition

F(xayaxfi&"')xn) < F(t)tix37 . )x'n.)

yields
Zj

n
2t—1+2(1—t)zl - <0,
j=3+ %3

whereas the inequality F(z,y,z3,. .,Zn) = F(0,2t,23,...,z,) is true if we

show that
Ty

> 0.

n
1-204+2(t=1)3 7=~
s

The conclusion follows. For » > 3 equality occurs if and only if
1

Ty =Zg=- =Ty = —. O
n
*
13. Ifa,b,c,d > 0 such thata + b+ c+ d =4, then
(1 + 3a)(1 + 3b)(1 + 3¢)(1 + 3d) < 125 + 131labed.
Proof. Let

F a,b,c,d) = (1 + 3a)(1 + 3b)(1 + 3¢)(1 + 3d) — 131abed.
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a+b a+bd
We claim that for a > & > 0, the inequality F(a, b, c,d) > F( 5 5 G d)

involves F'(a,b,¢,d) < F(0,a + b,c,d). Then, by AC-Theorem we have

1414 ),F(1,1,1,1)}

F(a,b,c,d)gmax{F(4,o,o,0),F(o200) (3 55

From
F({4,0,0,0) =13, F(2,2,0,0) = 49,

4
(§ o 0)_1 5, F(1,1,1,1) = 125,
<1

we get F(a,b,c,d) 5, which is the desired inequality

a+b a+b ) _
5 ,T,c,d) is equivalent to

& <

Since the inequality F(a,b,c,d) > F(

(a—b)2{131cd — 9(1 + 3¢)(1 + 3d)] > O,
whereas the inequality F(a,b,c,d) < F(0,a + b,c,d) is equivalent to
ab[9(1 + 3c)(1 + 3d) — 131ed] < O,

the conclusion follows. Equality occurs when a = b = ¢ = d = 1, and again

when one of the numbers a,b,¢,d is 0 and the others are equal to 3 O

*
14. Ifa,b,c,d > 0 such thata + b+ c+d = 4, then
(14 3a?)(1 + 36%)(1 + 3c2)(1 + 3d?) < 255 + a?b2c?d2.
Proof. Let
F(a,b,c,d) = (14 3a%)(1 + 36?)(1 + 3c%)(1 + 3d°) — a®b? 22
a+b

We claim that for a > b > 0 and t = (a,b,c,d) >

F(t,t,c,d) involves F(a,b,c,d) < F(O,2t,~c, d) Then, by AC-Theorem we
have

’ ’

Fla,b,¢,d) < max { F(4,0,0,0), F(2,2,0,0), F (

TN
Lol
TN

,o) ,F(l,l,l,l)}.
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44 4 6859
Since F(4,0 = 49 = 3:5:3:0) =
ince F(4,0,0,0) , F(2,2,0,0) = 169, F(3,3,3,0) -

and F(1,1,1,1) = 255, we get the desired result F(a,b,c,d) < 255
The inequality F'(a,b,c,d) > F(t,t,c¢,d) is equivalent to

< 255

(2 — ab) [c2d?(t2 + ab) — 3(3t% + 3ab — 2)(1 + 3c%)(1 + 3d%)] > 0
This inequality implies

Ad? S 3t2 4+ 3ab— 2
3(1 + 3¢2)(1 + 34?2) t2+ab

On the other hand, the required inequality F(a,b,c,d) < F(0,2t,¢,d) is
equivalent to

ab [3(3ab — 2)(1 + 3¢%)(1 + 3d%) — abc?d*] <0,

and it is true if
2d* S 3ab—2
3(1 + 3¢2)(1 + 3d?) = ab ’

To prove this, it suffices to show that

3t2+3ab—2>3ab—2
t24+ab — ab

Indeed, we have

3t2 4+ 3ab—2 2 S 2 3ab-2
t2+ab t2 4 ab ab ab
Equality occurs when @ = b = ¢ = d = 1, and again when one of the numbers
4
a,b, e, d is 0 and the others are equal to 3 O
*
15. Let z;,xz9, . ,Zn be positive numbers satisfying
1

Yxyxn .. Tn =270 <

Prove that | 1 1 . _n

1+x1+1+22+”'+1+$n_1+P




6 4 Solutions 297

1
Proof. We apply GC-Theorem to the continuous function f(t) = ——

14t
t > 0. Let us show that for z > y > 0 the inequality holds

f(z) + f(y) < max {2f (\/zy),a + b},

where a = f(0) =1 and b = tlim f(t) = 0. Rewrite the inequality as

1 1
18> .
max{1+\/a:y }_1+a:+1+y
For zy < 1, we have
2 } 1 1 2 1 1
max ¢ ———, 1 p— - = - - =
1+ /Ty I+z 14y 14+ /2y 14z 14y
2
_ vE-va) (- yam)

(1+2)(1+v) (1+ /zy)
For zy > 1, we have
max{ 2 1}_L__1.__: SR
1+ /7y’ l1+z 1+y 1+ 14y
-1 5,

On the other hand, we have

4= max (kra + kab+ (n— k) — ko) f(c)] =

ky+ka<n
>0
n—kl—kg
= max [k +2—"1"72) - —ky —ky) =
e, (b B =

c20

= . — ko) =n—
P Mlohi

and

n n
max{4, =max{n —1, = .
{&,nf(p)} = m {n 1+p} T+

By GC-Theorem it follows that
n

f($1)+f(x2)+"'+f(9:n) < max{4,nf(p)} = b +p

which is the desired result.
For n > 3, equality occurs if and only if z; = Ty=- . =z, =p. O
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*

16. If a;,a2,...,a, are positive numbers such that

then
1 1 1 n

Gra) "0t T T TFa)r - 0 T0R

1
1+ 12

Proof. We apply GC-Theorem to the continuous function f(t) =
t > 0. Let us show that for z > y > 0, the inequality holds

f(x)+ f(y) < max {2f (yzy),a + b},

where ¢ = f{0) =1 and b = Itlim f(t)=0
Setting t = /Ty and s = 1 + z +y (s > 1 + 2t), we have

1 1 s2+1-—2t2

f@+ I =0 Y v~ r o7

and the above inequality may be written as

2 1}> s2 4 1—2¢t2
max{(1+t)'~” (5422

For t > V2 — 1, we get

2 s? 41— 217 s24+1—2t2
e (e B i e
25t + 14 + 221 2(1 4 2t)e2 + ¢4 + 2121
(s +t%)? > (s +1%)2
2124221+ 1P +2t-1) >0
(s+82)? (s +12)2 -




6.4. Solutions 299

For t < /2 -1, we get

2 s2+1—2¢2 2 s2+1-212
m“"‘{(1+t)2’ }‘ s+ ~ (1+eP (s+)?
(s—1—2t)[(1—2t—t%)s + 1 — 1% — 26]
- T+ 0%(s + 22 g
(s—1-20)[(1 -2t ) (1 +2) + 1 -2 —26]
(1+t)2(s + 12)2 a
C 2(s—=1-2t)[1-3t2 — 23] 2(s—1-2t)[(1+¢)(1—t—212)]

0.
(14 2)*(s +12)? (1+2)%(s +12) g
On the other hand,
‘n—kl—kz .
§= nax (kra+kob+ (n—ky—ko) f(c)] = v [k1+ (1+¢)2 } -
>0 20
- k1r-ir-ll?:én(k1 tr-h—k)= 15}2;2)75—1(” ~h)=n-l
and n n
6’ = - 1, = i
max {4, nf(p)} ma.x{n (1+p)2} (1+p)?
By GC-Theorem it follows that
n
(@) + flma) +-+ f(on) < max (6,00} = (7

Equality occurs if and only if 2y =z = - -+ = z,, = p. O
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Chapter 7

Symmetric inequalities with
three variables involving
fractions

In this chapter we are mainly concerned with some inequalities involving
symmetric expressions as ones below, where a,b,c are non-negative real
numbers, and r > —2, p and q are given real numbers

_alb+c)+pbe blcta)+pea  c(a+b)+ padb

T b2 4 rbhe 4 2 c? + rea + a? a? + rab 4 b2’

_ a® 4 qbe b? + qea ¢ + qab

b4 rbe+c® 24rcata’ ’ a?+rab+ b2

E,

Ey

7.1 Inequalities involving £,

1. Let a, b, c be non-negative real numbers, no two of which are zero Then,
a(b+ c) b(c+ a) c(a + b)
b2+bct+c? " c2tcata? altab+b T

2. Let a,b,c be non-negative real numbers, no two of which are zero. Then,

ab—bc+ca bec—catab ca—ab+be
b2 + ¢2 c? + a? + a? 4 b2

3. Let a,b, ¢ be non-negative real numbers, no two of which are zero  Then

3
> =
-2

ab — 2bc 4 ca bc—?ca-{-ab_ ca--2ab+bc>0
b2 — be + ¢2 c? ~ca+ a? a? —ab+ b2 ~

(Vasile Cirtoaje, MS, 2005)

301
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4. Let a, b, c be non-negative real numbers, no two of whieh are zero. Then,

1 1 1 9
>
(b4 c)? + (c+ a)? T (a+b)2 ~ 4(ab+ bc+ ca)

(Iran, 1996)

5. Let a,b, c be non-negative real numbers, no two of which are zero.
If r > -2, then

Zab+(1r'—— 1bc+ ca S 3(r+ 1)
b24+rbc+ct T r42 °
( Vasile Cirtoaje, MS, 2005)

6. Let a, b, c be non-negative real numbers, no two of which are zero. Then,

Zab+ dbc + ca

>4
b2 + 2 -

7. Let a,b,c be non-negative real numbers, no two of which are zero. If
r > —2, then

>r 4.

Z ab + (r + 2)%bc + ca
b2 + rbc + c2

8. Let a, b, ¢ be non-negative real numbers, no two of which are zero, let p,r

be real numbers (r > —2) and let

Zab+pbc+ca

E(a,b,¢) = b2 + rbe + c2

Then,

3(p+2
a) E(a,b,c) > (:)—4_2—2, forp<r—1;

b) E(a,b,c) > ;—%+2, forr—1<p<(r+2)%
¢) E(a,b,c) > 2\/p—r, for p> (r +2)%
(Vasile Cirtoaje, MS, 2006)

7.2 Solutions

1. Let a,b,c be non-negative real numbers, no two of which are zero. Then,

a(b+ ¢) b(c+ a) c(a+b) > 9
B2 hbet+c?  cl4cata’ al+ab+b T
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First Solution By the Cauchy-Schwarz Inequality we have

Z a(b + c) (@a+b+¢)?
b2+bc+c - z:a(b2+bc+c2)'
be

Thus it is enough to show that

b2+bc+c)
(a4 b+c)? >2Z T :
Since \ \ ;
a(b +bc+c)=a(b+c—-——bc ).—_ab+ca— er ,
b+c b+c c

the inequality becomes

1 1
b+c—Jr c+a+a+b)

Qabc( > 2(ab + be+ ca) — a? — b — 2.

Taking into account that the AM-HM Inequality yields

1 1 1 9
>
btc cra atb” (b+c)+(c+a)+(a+d)’

it suffices to show that

Babe

" —q? — b — 2
P > 2(ab+be+ca)—-a c

This inequality is equivalent to the well-know Schur’s Inequality of third
degree

a® 4+ b3+ ¢ + 3abe > ab(a + b) + be(b+ c) + ca(c+ a)

Equality occurs for the following four cases: a = b=1¢, a =0 and b = c,
b=0andc=a,c=0and a =5b.

Second Solution By direct calculation, we may reduce the inequality to

D be(b? +ct) > 3 b2 (b2 4 ),

which is equivalent to the evident inequality

> be(b—c)(8® - %) > 0.
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Third solution (by Dariy Grinberg) The hint is to multiply the both sides
of the inequality by a + b + ¢ We have

a(b+ c) a(b+c)(a+b+c) _
(a+b+c[Z:——bbrbc“2 ] E[ e 28 =

_Eaab+ac—b2—c ) _Zab(a—b)—ca(c—a) B
- b2 + be + 2 - b2+ bec+c? -

abla—b ab(a — b
Zb2+bc+c Z 2+ca+a2
1 1
_Zab(a—b)(b2+bc+c2 _c2+ca+a2) -

ab(a — b)?
=(a+b+c)2(b2+bc+£2)(c2:-ca+az)

From this solution, the following interesting identity follows.

Z b+C _9+Z bC(b—c)2
b2+bc+c2_“ (a? + ab+ b2)(a? + ac+ ¢?)

*

2. Let a,b,c be non-negative real numbers, no two of which are zero. Then,

ab—bc+ca+bc-—ca+ab ca—ab+bc>§
b2 4 c2 c2 + q? a4 b2 T2

Solution. We have
ab—bet+ca 1\ —(b+e)(2a—b—c)
E(W‘§)_Z T
_Z (b+ ¢)( )+E(b+c)(a—c):

b2+c 2(b%+ c?)
(b+ c)(a—b) (c+a)b—a)
=2 2 +h) 2. NE+a?)

_ a—b ab+bc+ca-c2)
Z b2+c)(c2+a2)

Thus, the inequality is equivalent to
(b— )25, + (c — a)S}, + (a — b)2S. > 0,

where
S, = b%+c?)(ab+ bc+ ca—a?).
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Without loss of generality, assume that a > b > ¢. It is easy to check that
Sy > 0 and S, > 0. For nontrivial case S, < 0, it suffices to show that

(b~¢)2Ss + (¢ —a)28, > 0,
that is
(a®4c?)(ab+betca—b?)(a—c)? > (b2 +c?)(a®—ab—be—ca)(b—c)?.
This inequality follows by multiplying up the inequalities
>0+
a~-c>b—e,
(ab+ be + ca—b*)(a—¢) > (a® — ab— bc — ca)(b —¢)
The last inequality reduces to

2a(a—c)+2b(b—c) >0,

which is clearly true. Equality occurs fora=b=c,a=0and b=c¢,b=0
andc=a,c=0anda=%

*

3. Let a,b,c be non-negative real numbers, no two of which are zero. Then,

ab—2bc+ca bc—2ca+ ab ca—2ab+bc>0
b2 — be + ¢2 c? —ca + a? a?—ab+b2 —

Solution. For a = 0, the inequality reduces to

-2bc E+E>O
bz—bc+62+c b~

which 1s equivalent to
(b~ c)(b* + be+ %) > 0.

For a,b,c > 0, the inequality follows immediately applying Lemma below to

-1
the function f(z) = — Equality occurs fora =b=c,a =0 and b = ¢,
b=0andc¢c=a,c=0and a =b.
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Lemma. Let f(z) be an increasing function on (0,00). If a, b, c are positive
real numbers, then

2f(a)=f(b)—fe) | 2f(b)=f(c)=f(a)

b2 —bc+c? c?—ca+a?

2/(e)=f(a)=1(b)

T b 2

In order to prove Lemma, assume that a > b > ¢, denote

X =f(a)—f(b), Y =f(b)—f(c),
A=b —bc+c?, B=c?—catd® C =a? - ab+b?,

and write the inequality as

2 1 1 1 1 2
————— —F=—-Z)>
X(3-5-¢) Y (3+5-5)20

i Y it suffi h h 2_ 1>0 d
Since X > 0 and > 0, it suffices to show that A" B C an
1 1 2
Z+§_520' Taking into account that B— A= (a—b)(a+b—¢c) >0
and C— A= (a—c)(a+c—0b) >0, we get

On the other hand

1 1 2 B(C-A)-AB-C) _
ATBTCT ABC =
Bla—c)(a+c—b)—A(b—c)(a—b—c)
- ABC '
- . 1 1 2 . . b d
The inequality Z+§_ ol > 0 is true since B > A,a—c > b—c an

at+c—b>a—-b—c
*

4. Let a,b,c be non-negative real numbers, no two of which are zero. Then,

1 1 1 9
>
b+c2+ ¢+ a)? lF(a+b)2_4(ab—}~bc+ca)
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First Solution. Assume that a < b < cand denotez =b+ ¢, y = c+ a,
z =a+b Then, we have to show that

(Y v-Y ) (L) 29
forz>y>z>0and z <y+ 2z We have
eTv-Ya) (T5)-9-
=(£2)(Z5) -9-2(E# - L) (L) =
-2 (2-2) - S (S 5) = S (5 )

Therefore, we may write the inequality as

Z(’y - Z)2S$ >0,

where 9 |
;S‘:,_-Z—-"—2
Yz
2 1 2 1 y—z)(2y+ z
SinceSI>0,S=—+~———22————2=( ) 5 )ZOand
2 y* T (y+z)z oy (y + 2)y?z
3, ,3
y2Sy+z2Sz:2(y +z —1)22(?’“—1)20,
TYz T
we get

S —2)28, 2 (z— 2)2Sy + (z — 9)*S, =

— o\ 2 —\ 2 — 32 —_y 2
= (Z2) v+ (2Y) zzszz[(x ) - (2Y) 1;/25,,:
v z y z

_ (y—Z)(y+z—x)L32(f—Z)+y(r—y)] 5,20

Equality occurs fora=b=c,a=0and b=c,b=0and ¢ =a, ¢ =0 and
a=>b

Second Solution Since the inequality is homogeneous, we may assume
that ab + bc+ ca =1 In this case, the inequality becomes

S SR SR
(b+c)?2  (c+a)?  (a+b)2 =4
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We will show that the following sharper inequality holds for ab4 bc+ca = 1:

1 9 1 be(b—c)?
—_— > —_—
TR it i
Since
Ly lbc(b+c)2-—4b22 Z _y e b“
b+ 4 (b+¢)? (b+c)
_ L b
4 (b+c)?’

we may write the inequality in the form

1+b2c2+ 14 c2a? 1+ a?b? >5 |
b+ of (ctal (a0 2 (1)
(b+¢c)

This inequality was given at Mathlinks Contest in 2005. Taking into account
that

1+ b2c? _ (ab—{—bc+ca)2 b2 c?
- (

(b4 ¢)? b+c b4 c)?
_ be )2 b%c? N 2abe n 222
‘(“+b+c T Y Thre  bro?’

we may write (1) in the homogeneous form

c b+c 2b2 c? be
— _ >
S a? E:bc+a§:(b+c )+[(b+c)2 2]_0,

which is equivalent to

Y _1__ a _ be ]>
2(b=¢) [2 Sb1a  2btear =
or

(b— )28, + (c— a)2Sy + (a - b)2Sc > 0,
where

b2 4+ bc + ¢ —ab —ac
(b +c)?
Without loss of generality, assume that a > b > ¢ We see that

S, =

c2+ca+a2—bc—ba_ (a,—b)(a—{—c)+c2

(ct a)? = exap Y

Sy =
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and
a? +ab4 b2 —ac—bc _ a% 4 ab+ b* —b(a +b)

(a+0b)? - (a+b)?
For nontrivial case S, < 0, it suffices to show that

Sc: >0

(b—c)?Sa + (c — a)?S, 2 0,

that is
(c®+ca+a?—bc—-ba)(a—c)? _ (ab+ac—b?—bc—c?)(b—c)?
(a+c)? (b +c)?

This inequality follows by multiplying the inequalities

2

¢ + ca + a? —bc—ba > ab+ ac — b — be - c?
and
(a—c)? _ (b—c)?
(a+¢)2 = (b+c)?
The first inequality is equivalent to (a — b)? + 2¢2 > 0, while the second

c
> ——, that is ¢{fa — b) > 0.

a+c  b+ec

Equality in the original inequality and also in (1) occurs for a = b = ¢,

aswellasfora=0and b=c,b=0andc=a,c=0and a =b.

mequality is equivalent to

Remark. Michael Rozenberg noticed that

b3 — 3 — a(b? — c2)

Y (b—e)?Sa=3"(b—c) TP =

_ b3 (b—a) + c2(a~c) B
h Z(b ~e) (b-+ c) -

=2(b—¢) “a)b+ 7+ 2.6~ “—C(b+c)2=.
_Za-—b)a—-c 2+Z (c-T—a)Qz

where

Sa:(aib)z_*_(aj—cy'

Assume that @ > b > ¢ Since (¢ ~ a)(c ~ b) > 0, it suffices to show that

(@a—b)(a~c)Sa+(b~c)(b~a)Sy, >0



310 Symmetric inequalities with tlhiree variables involving fractions

But sincea~b > 0and a—c > b—c > 0, it suffices to prove that S, ~ S, > 0.

We have
a?® — b2 a \? b \?
e o (5 () -
aT b (a+b)2+ a+c b+c
_a—b+ c(a —b) ( LI b >0
Ca+b (a+c)(b+c)\a+tc b+c)— '
Third Solution (after an idea of Marian Tetiva) Let
1 + 1 N 1
(b+c)? " (e+a)? " (a+b)?

Because of the symmetry, we may assume without loss of generality that

E(a,b,c) =

a = min{a, b,¢c} Under this assumption, we will prove the desired inequality
by using the following chain of inequalities

> P —
E(a,b,c) > E(a,t,t) > T2at )’

where t = \/(a + b)(a + ¢)—a. It is easy to check that ¢(2a+t) = ab+bc4ca
This relation emphasizes the trick of the solution, to intercalate between
the two sides of the inequality a new expression for E(a,b,c) obtained
by equating two of the three variables (b and c) such that the expression
ab + bc + ca holds unchanged

In order to prove the inequality E(a,b,c) > E(a,t,t), we write it in the
form

(a+b)%+ (a+c)? 2 1 1

> = —,
(a +b)2(a + c)? (@+1)2 ~ 422 (b+c)?
Taking into account that a +t = \/(a + b){a + ¢) and

btc—2t=2a+b+c—2/(atb)(a+c)=

(VaTF-JaTe) e 0=
(Vat *) (Va¥b++vate)

the inequality is equivalent to
(b—c)? S (b—c)}(b+c+2t)
(a+6)*(a+c)® ™ 42(b4 )2 (Vat+ b+ at o)’

Since (b —c)? > 0, it is enough to show that

42(b+¢) (Va+b B+vate > (atb)?(atc)?(b+c+2t)
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This inequality follows by multiplying the inequalities

(\/a+b+\/a+c)22b+c+2t

and
at*(b+¢)t > (a+b)(a+e).

The first inequality is true because

(\/a+b+\/a+c)2=2a-l btc+2y/(a+b)atc)=
=2a+b4+c+2a+2t>b+c+ 2t

With regard to the second inequality, since t > v/bc (easy to check) and
a < Vbe (from a = min{a, b, c}), we have
2(b + ¢) — (a+ b)(a+ ) 2 2Vbe(b + ¢) ~ (Vbe + b) (Vbe + ¢) =
— Vie(VE- &)’ 20
. . : S . :
Finally, the inequality F(a,t,t) > Qi ) is equivalent to
1 2 9
12 @t 02 S W@t

We have

1 + 2 9 _ a(a —t)? >0
42 " (a+1)2 4t(2a+t)  22(2a+t)(a+t)2 T

*

5. Let a,b,c be non-negative real numbers, no two of which are zero.
If r > =2, then
Z ab+ (r—1)bc+ ca > 3(r+1)
b2drbet+c? T r42

Solution. In order to prove this inequality we will apply the expanding way
and will use then the following strong inequalities:

Zaa + 3abe > Zbc(b + ¢),
(a—b)%0b—-c)%(c-a)? >0,
> be(b—c)* 2 0.
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By expanding, we may write the inequality as ' > 0, where
E=+2)[A+(r—1)B]-3(r+1)C
and
A= Za(b + c)(a2 + rab - b2)(c2 + reca + az) =
= (rP+r+2)abey be(b+c) + 1> b7 (b + cP)+
+ 2rabcz a® + 6ra®bic® + Z bc(b4 + c4) + 2 Z b3c3,
B = Zbc(az + rab + bz)(cz 4 rea + a2) =
= 3r2a2b2c? 4+ (2r 4 ])abcz be(b + ¢) + z b3 + achas,
C = (a® 4 rab + b*)(b? + rbc + ¢*)(c* + rea + a?) =
= (r3 + 2)a?b%c? + r(r + Dabe Y be(b + c)+
+r Z b33 + rabcz a® + > b2t (b? + ¢?).
After some manipulations, we get
E=(r+2)X+ (r*=1)Y +2(r — 1)abcZ,
where
X =S be(b? + ¢ty = Yo 02F(B? + cP) = 3 be(b® + be+ ) (b — ) 2 0,
Y =Y 03+ F) - 23 6% =S viF(b—c)* 2 0,
Z= Zas—Zbc(b+c)+3abc_>_O

The inequality Z > 0 is well-known Schur’s Inequality. We have two cases

to consider.
Case r > 1 Since X,Y,Z > 0, it is clear that

E=0F+2)X+*—1Y +2(r—1)abcZ >0
Case —2 < r <1 Settngr =-21n

E=r+2)X+ (r?=1)Y +2(r — 1)abeZ =
= (r+2)[A+(r - 1)B] = 3(r + 1)C,

we get
Y — 2abeZ = C = (a—b)%(b—c)*(c—a)* > 0.



7 2 Solutions 313

Thus, it follows that 2(r — 1)abcZ > (r — 1)Y, and hence
E>(r+2X+( - 10)Y +(r=1)Y = (r +2)X + (r = DY] >
>(r+2)(X-3Y)=(r+2)> be(b—c)* >0
Equality in the given inequality occurs in the following four cases a = b = ¢,
a=0andb=c¢c,b=0andc=a,c=0and a =b.
Remark 1. Actually, we found for F the following non-negative forms
E=(r+2)> be(b® +bc+F)b—c) + (r? = 1) b**(b— )+
+ 2(r ~ l)acha(a —b)(a—¢)
for r > 1, and
E=1-r)J[(b=c®+(r+2)d be(b—c)* + (r +2)2 > b2 (b —c)?
for -2 <r<1

Remark 2. In the particular casesr = 1,r =0, = —1 and r = 2 we obtain
the inequalities from the previous applications 1, 2, 3 and 4, respectively.

*

6. Let a,b,c be non-negative real numbers, no two of which are zero. Then,
Zab+4bc+ca >4
b? + c?
Solution. First notice us that equality occurs when one of a, b, ¢ is zero and
the others are equal. Let a < b < ¢ and

ab+ 4bc + ca
Blabe) - e
We will show that
E(a,b,c) > E(0,b,¢) > 4.
For @ = 0 we have E(a,b,c) — E(0,b,¢) = 0, and for a > 0 we get

E(a,b,c)—E(0,b,c)  b+e  4c?+b(c—a) 4b?+c(b—a)

p TRt T cxa?) a0V

c
Letting now z = E+ 5o e find

4bc b ¢ 4

EO,bc)—4 = _20¢ 0. ¢ _
( c)—4 b2+c2i—c+b T T T
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*
If

7. Let a,b,c be non-negative real numbers, no two of which are zero.

r > —2, then
ab + (r + 2)%bc+ ca

> .

Z b2 + rbe + 2 27+4

Solution. Let a < b < c and
ab+ (r +2)%bc+ ca

E(a,b,¢) = Z b2 + rbc + c?

In order to prove the desired inequality we consider two cases

1. Case (r + 2)%b? > (r — 1)bc + ca.
We will show that
FE(a,b,c) > E(0,b,c) > r + 4.

For a = 0 we have E(a,b,c) — E(0,b,¢) = 0, and for a > 0 we get

b+c (r+2)2c2—(r—l)bc—ab+

E(a,b,c)-E(0,b,c) 4
T bl rbet c(c? + rea + a?)

(r+2)%% — (r—1)bc—ca S
b(a? + rab + b?%)
+ 2)%¢2 — (r — 1)bc— ab >

a

>(T
c(c? + rea + a?) -
(r 4+ 2)%bc — (r—1)bc—bc  (r2+3r+4)be
> = >
= c(c? + rea + a?) c(c?4reca+a?)
¢
—, we find

Letting now z = E+ 5
_(r+2)%c b, e
E(O’b’c)_r_4_b2+rbc+c2 + r—4=

2
(r+2) +r—r—4=
c+r rH4T

Il Case (r —1)bc+ca > (r+ 2)2b2
This condition yields (r —~ 1)+ a > 0, (r —1)b+ b > 0, and hence r > 0.

‘Towards proving the desired inequality, it suffices to show that

o2
ca+ (r+2) ab+bc2r+4-
a? + rab + b®
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Indeed, using the condition

cs (1"-{-2)2532
(r—=1b+a
yields
b(a + b)
c(a+b)+(r+2)2ab_ _ o, (r—=1)b+4 a i
&+ rab B2 T 4> (r P 4 =
b (r +2)? 4
= L 4> e 4=250
(r+2) —1pta r—4> - T r> ,

and the inequality is proved
Equality occurs in the original inequality when one of a,b,c is 0 and the
others are equal

Remark For r = —1, we get the inequality from the application 6 More-
over, the inequality is also valid for r == —2; that is

a(b+c) blc+a) cla+b)
(b=c)? " (c—a)® " (a—b)?

*

> 2

8. Let a,b,c be non-negative real numbers, no two of whick are zero, let p, v
be real numbers (r > —2) and let

ab + pbc + ca
E(a,b,c )—z +rbec+c?

Then,
3 2
a) E(a,b,c) > E;—) forp<r—1;
T

b) E(a,b,c) > ;—-i—{)+ 2, forr—-1<p< (r+2)2;
c) E(a,b,c) 2 2,/p—r, for p> (r +2)°.

Solution. a) For fixed a,b,c and r, consider the linear function

_Zab+pbc+ca_ 3(p+2)
B b2 4 rbe + c2 r42

Since

be 3 —(b—c)?
Zb2+rbc+c2 42 _Z(r+2)(b2+rbc+c2) <0,
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the function f;(p) is decreasing  Therefore, it suffices to prove that
fi(r — 1) > 0. Taking into account application 5 from this section, the
conclusion follows Equality occurs for @ = b = c¢. In the case p = 7 — 1,
equality again fora=0and b=c¢,b=0andc=a,c=0and a=1b

b) For fixed a,b,c and r, consider the linear function

_Zab+pbc+ca P
N b2 +rbc+c? r4+2

Since r — 1 < p < (r 4 2)%, it suffices to prove that fa(r — 1) > 0 and
f2((r + 2)%) > 0 Taking into account applications 5 and 7, the conclusion
follows For 7 —1 < p < (r + 2)?, cquality occurs if and ouly if a = 0 and
b=c,b=0andc=a,c=0anda=2>

¢) The condition p > (r + 2)? involves p> 0 Let a < b < cand

Z(:Lb-l—'pbc-r~ ca

E(a,b,¢) = b2 + rbc+ c?

We have two cases to consider.
I Case pb® > (r—1)be + ca
We will show that

E(a,b,c) > FE(0,b,c) 2 2/p—

For a = 0 we have E(a,b,c) — E(0,b,¢) = 0, and for a > 0 we get

E(a,b,c)—E(0,b,c) b+ec pc? — (r — 1)bc — ab
a "~ b2 4+ rbe + P ¢(c? + rca + a?)
pb? — (r — 1)bc —ca _ pc? — (r — 1)bc— ab S
t (@  rab + 07) o treat a?)
(r + 2)%c —(r—1)be—bc  (r?+3r+4)bc
2 2 = olc? 7y >0
c(c? + rea + a?) c(c®+rca+a?)
_ _b c .
Letting now z = E+ 5 we ge
pbc b
P _2 —
E(0,b,c)—2/p+1= 2T bc-l—c? VDT =
2
T+ 71— /D
=P -|~:L'—2\/}3+7‘=( Vo)

T+ r+T
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Il Case (r— 1)bc+ ca > pb®.
Since p > 0, this condition yields (r — 1) +a > 0, (r — 1)b + b > 0, hence
r >0 In order to prove the desired inequality, it suffices to show that

ca + pab + be
hutnL AR sheh L B -
a2+rab+b2—2\/}_) T

Indeed,
b(a + b)
cla+b) +pab_, r-Dbta _
a2 +rab4 b2 ptr>pb a? + rab + b2 2Vptr =
~ (7:%—2\/;3“2 :i—z\/;a+r: %(r—\/ﬁ)z >0,
and the inequality is proved.

For a < b < ¢, equality occurs if and only if @ = 0 and g+ g =/p—-r
Remark 1. This application generalizes the preceding applications 1 - 7
Moreover, the inequality ¢) is also valid for r = —2 and p > 0, that is,

SR 2 o p ),

On the assumption @ = min{a,b, ¢} and p > 0, cquality occurs if and ouly if
c

b
a=0and E+b=\/;_:'i-2

Remark 2. For p = 1, we get the following inequalities

1 9
Zb2+rbc+c22(r+2)(ab+bc+ca)’ for r =2

1 2r+5
Zb"’-l—rbc—f-c?z(r+2)(ab+bc+ca)’ for —1<r<3;
> ! 527 for —2<7< -1

b2+ rbc+c? T ab+bc+ca’ =
Remark 3. For p+r = 2, we get the inequalities

b4-c 18 2
Zb2+rbc+c2_(r+2)(a+b+c)’ for r23,

b+c¢ 2(r+6 17-5 2
Zb2+rbc+c22(r+2§(a+g+c)’ for \/—‘.2 ST‘S§,

b-te 3—r+2y2—7r V1T -5

Zb2’+rbc+c2 =

at+b+c ’ 2
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7.3 Inequalities involving FE

1. Let a, b, c be non-negative real numbers, no two of which are zero Then,

2(12-|—bc+ 2b2+ca‘* 2¢2 + ab
1 | 2rad | et

5 2
-2
2. Let a,b, c be non-negative real numbers, no two of which are zero. Then

a’ + be + b + ca N c? + ab >
b2 4 be4+c?  c24+ca+t+a’?  altab+ b2

(Vasile Cirtoaje, MS, 2005)

3. Let a,b, c be non-negative real numbers, no two of which are zero. Then,

a?+2%c b +2a c2+2ab _ 3
> - b :
2 b+ ¢ + c+a + a+b _2(a+ +e);
2 2 2
b) a+2b2c+b+2c¢21+c +2a§2g;
(b+c) (c+a) (a+b) 4

) 2a% + 5bc N 2% + 5ca N 2¢% 4 5ab > ﬂ
(b + c)? (c+a)? = (a+b)? —

1
( Vasile Cirtoaje, MS, 2005)

4. Let a,b, ¢ be non-negative real numbers, no two of which are zero. Then,
a® — be b — ca c? —ab

>0
2b2 — 3bc + 2¢? + 2¢2 — 3ca + 2a? + 2a? — 3ab + 2b%
( Vasile Cirtoaje, MS, 2005)

5. Let a,b, ¢ be non-negative real numbers, no two of which are zero Then,

at b2 c?

> 1.
2b2 — be + 2t Jr'2c2—ca~}—24512+2a2—ab+2b2 =

(Vasile Cirtoaje, MS, 2005)
6. Let a, b, ¢ be non-negative real numbers, no two of which are zero Thea,

2a? — be 2b% — ca 2¢ — ab

>3
b2—bet+c?  c?—ca+al Jra?—aber2 =

( Vasile Cirtoaje, MS, 2005)
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7. Let a,b,c be non-negative real numbers, no two of which are zero. If
r > —2, then

2a% + (2r +1)bc _ 3(2r +3)
> >
b2 + rbc + ¢? r4 2
(Vasile Cirtoaje, MS, 2005)

8. Let a,b,c be non-negative real numbers, no two of which are zero. Then

2 2 2
a +16bc+b +16ca+c +16ab210‘
b2+02 c2+a2 a2+b2

(Vasile Cirtoaje, MS, 2005)

9. Let a,b,c be non-negative real numbers, no two of which are zero. If
7> —2, then

> 4r +10.

3 a? +4(r + ‘7)2bc
b2 + rbc + c?
( Vasile Cirtoaje, MS, 2005)

10. Let a,b,c be non-negative real numbers, no two of which are zero, let
g,7 be real numbers (r > —2) and let

E(a,b,c) = Zbga, + gbc

+rbe+c?
Then,
3(g+ 1) o + 1
E(a,b,c) > -
a) (a,b,c) > r 12 for ¢< 5
b) E(a,b,c)2$+2, for 2r+15q54(r }-2)2,

c) E(a,b,c) > dkr +12k* — 2, for q=4k(r+2k)? k> 1

(Vasile Cirtoaje, MS, 2005)

7.4 Solutions

1. Let a,b,c be non-negative real numbers, no two of which are zero. Then,

202 +be 202+ ca 2% 4+ab_ 9
2 2 + 2 2 + 2 ¥ 25-
b2 4 ¢ ct+a a? + b? 2
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First Solution. Since
2(2a® + be) 5 2(2a2 —b? —c?)  (b—c)?

b yc2 b2 4 ¢2 TR

we may write the inequality as

2a% — b? — ¢?
22 b2+c?. —Zb2+c2'
But
2a% — b? — c? a? — b a? - ¢? a’ — b? b? — a?
> b2 + c2 Zb2+c2 sz+c2 Zb2+c2 Zc2+a2:
1
_ —5?) _
=2 (a® = (b"’—kc2 c2+a2)
(a® — %)

=2 (b2 + c2)(c? + a?)

Counsequently, the inequality is equivalent to
(b2—62)2 (b—c)2
> —_—_
QZ (2 + a?)(a® + b2) = Z b2 + ¢2

Since (b® — c2)? > (b— ¢)%(b% + ¢?), it is enough to show that

(b— )28 + (¢ — a)? Sy + (a — b)2S, > 0,
where
Sy = 2(b% + ¢)% — (¢ + a?)(a® + b%).
Without loss of generality, we may assume that a > b > c. We have
Sy = 2(c* + a?) — (a? + b} (b + *) >
> 2(c? + a?)(c® + b%) — (a® +b2) (b2 + c*) =
= (b® + c?)(a® — b% + 2¢%) > 0,
S, =2(a® + )2 — (B2 + ) (P +a%) >0
and
Sa+ Sy = (a? — )2+ 2% (a® + b2+ 2c%) 2 0
Therefore,
(b—c)2Sa + (c—a)2Sp + (a — b)2Sc >
> (b—c)2S 4+ (a—c)?Sy > (b—c)*(Sa+S) 20
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Equality occurs when a = b = ¢, and also when one of a,b,c is 0 and the
others are equal.

2b%c?
Second Solution (by Dariy Grinberg). Since bc > R and

2a% + be _ 2(a?h? + b2c? + c%a?)

b2 42 — (b2 + ¢2)2 '
we have
2a® + be 2,2 , 2.2, 2.2 1
Z O > 2(a*b” + b°c* + c*a )Z—__(b2+c2)2'

Therefore, is it enough to show that

1 9
> .
> (62 + )% = 4(a?b? + b2c? + c2a?)

This inequality is just Iran Inequality (see application 7 1.4)
*
2. Let a,b,c be non-negative real numbers, no two of which are zero. Then

a? + be b2 + ca ¢+ ab
2 t 3 7t = 7 22
b24+bc+c?  c2t+ecata aZ+ab+b

Solution. By Cauchy-Schwarz Inequality, we have

a? S (Za(‘z)2 Ya'—abeSa

Z:szr-bc-f—cQ—Zaz(b2+bc+(:2)—— 22b2c2+acha

and

(E:bc)2 o Zbc(b2+c2)—2acha

Zb2+bc c2—>- 2 2y 2,2 2, 2
+ > be(b? + be + ) > b +Zbc(b + ¢“)

Thus, it suffices to show that

N
A%
ol <

where

X:Za“—abeZa, Y=Zbc(b2+cz)—2acha,
A=2% b +abcy q, B=3%"b"c"+ Y be(b? + ).
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Since
X > Zbgcz—acha: %Zag(b—c)2 >0,

it is enough to show that B> A and X > Y We have

B-A =Zbc(b2+c2)—2b2(:2—abc2a=
=2:bc(b—c)2 -i—szc2 —achaz
= Sbe(s—cf + 5 Y aX(b— ) 20
and
X-Y =Za4+abcza—2bc(b2+c2)20.

The last inequality X > Y is just Schur’s Inequality of fourth degree. This
completes the proof. Equality holds if and only if a=b=c.

Remark. Actually, the following sharper inequality holds:

2a? + 3bc N 262 + 3ca N 2¢2 + 3ab
bP2+be+e?  24cata’  al+ab+b:

We will prove it at application 7 2.7.

*

3. Let a,b, ¢ be non-negative real numbers, no two of which are zero. Then,

a? +%c¢ b*+2%a c*+2ab _ 3
> = b :
a) b+c + c+a t a+b _2(a+ +e);
2 b2 + 2 A +2b_ 9
b) a* + 2be + cg-i- + a22_,
(b+¢)?  (c+a) (a +b) 4
242 +5bc 2% +5ca  2¢ +5ab _ 21
¢) 7 T 7 T T2
(b+¢) (c+a) (a+ b) 4

Solution. a) Since

a’ 4 2c  3(b+c) 22 -1~ ) — (b—c)?
b+c¢ 4 4(b + ¢)

2

the inequality is equivalent to

2a? — b — ¢ (b—c)?
__..>§ :
22 b ¢ - b+c
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Taking into account that

a?—b? c2 —b?

2a% - 42 —¢? _
DD S b+c _Zb-f—c Z:b+c Z Za—f—b—
c)*(b+¢c)

:Z(bzﬂcg)(c—i—a ) c+a (a+b)’

the inequality transforms into one of type

(b—1¢)2S, + (c — a)%Sy + (a — b)25, > 0,

where

Sa=2(b+¢)* — (c+ a)(a +b).

Without loss of generality, we may assume that a > b > ¢. We have

Sy = 2(c+ a)?—(a-+b)(b+¢) > 2c+a)(c+b)—(a+b)(b+c) =
=(b+e¢)(a—b+2¢) >0,
Se=2a+b2—(b+c)c+a)>0

and
Sa+ Sp=(a—b)*+2c(a+b+2)>0.

Therefore,

(b—¢)?Sa+ (c—a)’Sy + (a — b)?S, >
> (b= ¢)’Sa+(a— )25y = (b—c)*(Sa+ ) 2 0

Equality occurs when a = b = ¢, and also when one of a,b,¢ is 0 and the
others are equal.

b) Applying Cauchy-Schwarz Inequality and then the inequality a), we
have

(b+e)? = S (a? + 2be) 2 @ibior

Equality occurs if and only if a = b = ¢.
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c) Write the inequality as follows
5.2
Z 2a +5bc_z >0,
(b+¢)2 4

4(a? - b%) + 4(a? — ¢?) — 3(b — ¢)?
2 (b+c)?

a —b b? — a2 a—b
1 ror (b+ ¢)? Z (¢ +a)? z:(a:+b2'" ’
(a— b)2(a+b)(a + b+ 2¢) (a— b)?
e P e 2

Setting b+ c=1x, ¢c+a =1y and a + b = 2z, we may write the inequality in
the form

>0,

(y — 2)25; + (2 — 2)*S, + (z — 9)%S. > 0,
where
Sy —-4x3(y + z)—3y2z2, Sy :4y3(z +z)—32%2% S, :4z3(x + y)——33:2y2

Without loss of generality, assume that 0 < z < y < z. Taking into account
that
z+y—z2=2c20,

we have
S, > 3y(z3 - a:zy) >0

and
Sy > 4zy(z + ) — 3z%z(z + y) = 2% [dzy + 2(y — 37)).

If y — 3z > 0 then Sy >0, and if y — 3z < 0 then
Sy > 2*[dzy + (z +y)(y — 3z)] = z*(3z + y)(y — ) 2 0.
Since Sy > 0 and §; > 0, it suffices to show that Sz+ Sy >0 We have
Sy + 8, = dzy(z? + y?) + 4(z® + 1°)2 — 3(a® + y)2* >
>dzy(x? +y) + 42 + )2 =32 + ) (z + )z =
= doy(z® +¢*) + (2 ~ doy +¢")(z + v)2
If z2 — 4zy + y* > O then S, + Sy, > 0, and if 22 — dz2y + y? < 0 then
Sz + Sy = dzy(z® + %) + (2% — 4oy +97)(z +9)* >
> 2zy(z +y)* + (aF — day + 7)) (2 +v)" =
=(z-y)*(z+y)* 20
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Equality occurs fora=b=c,a=0andb=c¢c,b=0and c=@a, ¢ =0 and
a=b

*
4. Let a,b,c be non-negative real numbers, no two of which are zero Then,

a? — be b2 — ca ¢t —ab
+ + 20
22 — 3bc+ 2¢?  2¢?2 — 3ca+ 2a? ' 2a? — 3ab + 22

First Solution The main idea is to apply the Cauchy-Schawarz Inequality
after we made the numerators of the fractions to be non-negative and as
small as possible To do this, we write the inequality as

a’+2(b- c)? b% +2(c— a)? &+ 2(a — b)? S g
202 - 3bc+2¢?2 22 —3ca+2a2  2a2 —3ab+ 22 T

According to Cauchy-Schwarz Inequality, we have

(5 Za2 —4Zbc)2

Z a +2(b—c)?
262~ 3be + 22 = $(2% — 3be + 22) [a2 + 2b— ¢)7]

and it remains to show that

(5302 - 43 be)’ 2 33727 - Bbe+2¢%) [a? + 2(b ~ )7 .

This inequality is equivalent to

Za" +acha+ QEbc(b2 +c4) > GZbQCQ.

We can get it by summing up the inequality

> a'+tabed a2 > " be(b? + cP)
to
3 Z:bc(b2 +c)>6 Eb2c2.

The first inequality is well-known Schur’s Inequality of fourth degree, while
the second inequality is equivalent to

35 be(b )2 >0

Equality occurs fora=b=c¢,a=0andb=cand¢c=qa,c=0 and a = b
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Second Solution (by Ho Chung Siu). Since

(a®—bc) —(a—-b)latc)+(a—c)a+b)
ZQbQ 3be + 2¢2 =2 2!)2—3bc—}—2c2 B

_Z (a—b)(a+c) Z (b—a)(b+¢) _
2b2—3bc+2c2 2c2 3ca+2a2 -

=Z(a—b)( a+c B b+ ¢ )_
2b2 — 3bc 4 2 22 — 3ca + 242/

— e by 2(a® + ab+b?) —cla+ b +c)
2% — 3bc + 2¢2)(2¢? — 3ca + 2a?)’

the inequality is equivalent to
(b— )28, + (¢ — )28y + (a — b)%S, > 0,

where
Sq = (2% — 3bc + 2¢) [2(6* + be+ *) — ala+ b+ ¢)] .

Without loss of generality, we assume that a > b > c¢. Since S, > 0 and
S, > 0, it suffices to show that S, + Sp > 0; that is

(2¢2 — 3ca + 2a%) [2(c* + ca+ %) —bla+ b+ )] >
> (2b% — 3be + 2¢2) [a(a + b+ c) — 2(b% + be + &)
We may get it by multiplying the inequalities
2¢% — 3ca + 2a% > 2b% — 3bc + 2¢°
and
2(c2 +ca+a2) —bla+b+c)>ala+b+c)— 2(1)2 +bc+c2)

The first inequality is equivalent to (a—b)(2a+2b—3¢) > 0, while the second
inequality is equivalent to (a —b)2 +c(a+b+¢) >0

*

5. Let a,b,c be non-negative real numbers, no two of which are zero. Then,

2 2

a + b2 N ¢ > 1
22 — be 2c2 ' 22 —ca+2a2  2a’—ab+2b2 T
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Solution. By Cauchy-Schwarz Inequality, we have

2

a 2
Z:aQ(Qb2 — be 4- 2c2)Z 557 —be 1282 > (Z az) :

Thus, it suffices to show that

(36" = 5 (22 — b+ 2c2).

The inequality is equivalent to

Ea4+abc§:a22§:b2c2

We may obtain 1t by adding the fourth degree Schur’s Inequality

> at +abcy a> > be(b? +cb)

to

E:bc(b2 +c)>2 Zb2C2
The last inequality reduces to Ebc(b ~¢)? > 0 Equality occurs when
a = b= ¢, and also when one of a,b,c is 0 and the others are equal

*

6. Let a,b,c be non-negative real numbers, no two of which are zero. Then,

2a° — be 2b2 — ca 2¢2 — ab
2 2+ 2 2+ 2 223
b —bec+ece ¢t —ca+ta at—ab+b

First Solution Write the inequality such that the numerators of the frac-
tions to be non-negative and as smaller possible, that 1s

2a? + (b — ¢)?
> 0.
Z b2—bc+c 26

Applying now the Cauchy-Schwarz Inequality, we get

ZQa + (b—c)? S 4(22a2—2bc)2

b — bc +c = Z:(b2 ~ be + ¢?) (2a2 + (b— c)2)

We still have to show that

( Za —Zbc) >BZ —bc+c (2a2+(b—c)2)
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This inequality reduces to

22(14 +2acha + Z:bc(b2 4+ %) > 62b2c2

We can get it by summing up the inequalities

Y a' tabey a> S be(d? + )
and
E be(b® + %) > 2 Zb2c2,
multiplying by 2 and 3, respectively The first inequality is well-known

Schur’s Inequality of fourth degree, while the second mequality is equivalent
to

Y be(b—¢)? 2 0.
Equality occurs fora=b=¢,a=0and b=¢,b=0and ¢c=a, c= 0 and
a=>b
Second Solution. The inequality follows by applying Lemma from
application 7.1.3 to the increasing function f(z) = z? We get

2a2—b2—c2+2b2—c2—a2 2¢2 — a? — b2 >0
b2 — be + c2 c2—ca+a? a’—ab+b2) T

which is equivalent to the desired inequality.

*

7. Let a,b, ¢ be non-negative real numbers, no two of which are zero. If
r > —2, then

2a? + (2r + 1)be > 3(2r +3)
B2+rbe+c2 T r+2
Solution. There two cases to consider.
I. Case r > —1. Since

2%+ (2r+1)bc _ 2r+3 _ 2a°—b*-¢? N B2+ (2r+1)be 243
b2 +rbc+c? r+2  b2irbetc? b2 +rbe+c? r+2
2a2 — b2 — 2 (r+1)(b—c)?

T W irbet e (r+2)(B2+rbe+c?)’

we tnay write the inequality in the form

2

2a% — b2 — c? S r+lz (b—c)
Z:J?)2—f—rbc—f—c2“r‘—f—? b2 + rbc+ 2
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Since
2a% — b2 — ¢? E a? — b? Z a? — c? -
sz F rbe + ¢ b?-i—r'bc-i-c2 b2 + rbe + 2
a? — b2 b2 — a?

zz:b?-i-rbc—i—c? Zc2+r<':a+a2 B

1 1 ) -
ZE(G —b (b?+rbc+c2—(:Q-f—rca+a2 N

-y (a®? = bV (a—b)(a+b+re)
(b + rbe + 2)(? + rea + a?)’

the inequality is equivalent to
(b—¢)*Ss + (c— )28y + (a — b)2S. > 0,
where

Se=(r+2)(b+e)ra+b+c)(b? +rbc+ c?)—
— (r + 1)(c* + rca + a?)(a® + rab + b?).

Due to symmetry, we may assume that a > b > ¢ To prove the inequality,
it suffices to show that S; >0, S, >0 and S; + S, > 0.
We can prove that Sy > 0 by multiplying the inequalities

(r+2)(c+a)(a+rb+c) > (r+1)(a® + rab + b?)

and
c2+rca+a22b2+'rbc+c2.

The first inequality is equivalent to
2+7)+ (2+7)(2a+rbc+ (a—b)a+ (1+7)b] >0,
and is true because
2a+rb=2(a-b)+(2+7r)b >0

and
at+(l+r)b=a—-b+(2+1r)b>0.
The second inequality is also true because
c2+rca+a2-(b2+rbc+c2) =(a—b)(at+b+rc)=
=(a—=b)[la—¢c)+(b~c)+(2+7)g > 0.
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We can prove that S, > 0 by multiplying the inequalities

r+2>r+1,
(a+b)(a+b+re)>c? +rea+a?,
a2+rab+b22b2+rbc+c2.

Indeed,
(a+b)(a+b+re)—ct—rca—a® = b2—ct 4+ b[2(a—c) + (24+7)] >0
and
a® +rab+ b2 — (B2 +rbe+ct)=(a—c)a—b+ (1 +1)b+¢] 20.
In order to prove the inequality S, + Sy > 0, we write it in the form
csc® + eacd +eact +ere+ 0 >0,

where

2(2+ 1),
201+ )2+ r)(e+b),
2(1+7r)*

)

| |

H

14 7r)%(a®+ b + rab),
= (44 3r)(a® + b%) + r(1 + r)ab(a+ b) > (2 + r)%abla + b),
(a—b)? [a® + b + (2+r)ab].

e

Since ¢4 > 0, €3 >0, ¢ >0, ¢1 >0 and ¢p = 0, the conclusion follows.

1
II. Case -2 < r < —3 The hint is to apply Cauchy-Schwarz Inequality
after we made the numerators of the fractions to be non-negative and as
small as possible. To do this, we write the inequality in the form

22+ (1 +2r)bc _1+2r] 6
2 b2 + rbe + c2 247 | T 2471’

or

E,
—_—2>6
Zb2+rbc-f—c2 -

where
E.= 4+2r)a®—(1+2r)(b—c)* > 0.
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We will show that

B (XE)

Z b2 4 rbc+c2 ~ Z(b2 + rbe + c2)Ea -

The left inequality follows by Cauchy-Schwarz Inequality. In order to
prove the right inequality, we see that

ZE =2(1-r)> a®+2(1 +2r) Y be,
(. Ba)’ = 4(1 —r)> 3 a® + 12(1 + 20%) 3" 622

+8(1 47 —2r%) > " be(b® + ) + 8(2 + r)(1 + r)abe ) a,
and

Z(b?‘ + rbe+ ¢?)Eq = —2(1 + 2r) > a* +2(3 + r + 2r?) > b2+
+ (2—r)(14-2r) Zbc(b2+cg)+2r(2-l r)acha

Thus, the inequality becomes as follows

2(2+ r)? O +abed " )—(9+r(1+‘7r Zbc(b2+c)
Zb2c220,
2(2+r)[2a4+abc2a—Zbc(b2+c2)]+
+3 [Zbc(b2+cz) —Qszcz] >0
Since
D obe(B? + ) =23 b2 = S be(b —c)? >
and
Y oat+abed a— N be(b?+ %) >0

is well-known Schur’s Inequality of fourth degree, the proof is complete
Equality occurs fora =b=¢,a=0and b=¢,b=0and ¢ = a, ¢ =0 and
a=1b

-1 -1 -3

Remark FO['T'—‘Q,T‘—'L?‘=0,T=T,T=—-2—,7'=—1andr= —,
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we get, the following particular inequalities.

2a2+5bc+2b2+5ca+2c2+5ab
Gror " (craE T @y
2a% + 3be N 262 + 3ca N 2¢% 4 3ab
b2+ bct+c?  ct4cata? attab+b?T
202+bc+2b2+ca 2c2+ab>9

b2 4 ¢? c? 4 a2 a? 452 — 2’

21
Z'Z-,

1 1 1 9
462 — be + 4c? LT t 1 a1 ap = 7(a? + b2 4 ¢?)’
a® b? c?
202 — be + 2c? 1 2c? — ca + 2a? + 2a? — ab + 2b2 21,
2a? — b 262 — ca 2¢2 — ab
b2 — be + 2 c2—ca+a2+a2~ab+bz" ’
a? — be b2 — ca c? —ab

>0
262 — 3be + 2c2 t+ 2¢? — 3ca + 2a? + 2a2 — 3ab 4 262 —

In all these inequalities, equality occurs for @ = b = ¢, and also fora = 0
andb=c,b=0andc=a,c=0anda=1b

*
8. Let a, b,c be non-negative real numbers, no two of which are zero. Then

2 6b 2 6 2 } 16ab
a“ +1 c+b+1ca+c+ a210.
b2+C2 c2+a2 a2+b2

Solution. Let a < b < c and

a® + 16be + b2 4 16ca + c* + 16ab
b2 + 2 c? + a? a? + b2

E(a,b,c) =

In order to prove the inequality, we consider two cases
1 Case 16b3 > ac?. We will show that

E(a,b,c) > E(0,b,c) > 10

We have

2 3 _ g2 3_ 402
a a(16c®> —ab®)  a(l6b ac)>0

E(abe) = BO.b0) = oot —aaia Ve ©
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¢
since ¢3 — ab® > 0 and 166° — ac? >0 Letting now z = E+ -, we find

b
E(0,b,c) — 10 = 5 TS I S
/b.¢) b2 2 b2 oz B
_9)2
_(z-2) (:r+4)20-
T

1. Case ac® > 1653 It suffices to show that

c? 4 16ab

_— >

e > 10.

Indeed, we have
16b3+16b

c? + 16ab a a 16b
_— — £  _10=—-10 6—10>0
215 10 > I 0 1 . 10>1 >

Equality occurs when one of a,b,c is 0 and the others are equal.

*

9. Let a,b,c be non-negative real numbers, no two of which are zero.

r > —2, then

a® + 4(r + 2)%bc
>
Z b2 +rbc+c2 4r+10

Solution. Let a < b < ¢ and

Za +4 T+2)2bc
b2 + rbe + 2

L. Case 4(r +2)?6> > c*(a + rb). We will show that
E{a,b,c) > E(0,b,¢) > 10.
For the nontrivial case a > 0, we have
E{a,b,c) — E(0,b,c) a 4(r + 2)2c3—b%(a + rc)
a b2 4 rbe + 2 c2(c? + rea + a?)

4(r+2)%° —c®(a+rdb) _ 4(r+2)%E—b*(a+re)

b%(a2+rab+b?) c?(c? +reca+a?)
S 4(r + 2)*b%c—b%(c + rc) _ (4r*+15r+15)b%c

c?(c? 4 rea + a?) T 2 +reata?)

1
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c
Letting now = = -+ 5 e find
c

4(r +2)%c  b*

E0Obe)—d4r—10=——"" " 4 4+ - —4r—10=
(0,6,¢) — 4r — 10 b2+rl:rc+c2+c2+b2 ir =10
4 2 _ 9)\2

_ A +2) +x2_4r_12___(x 2)z+ 1+ 4)

T+ T4+r

> 0.

I Case c*(a+rb) > 4(r+2)%3 This case implies a+rb > 0, b+rb > 0,
and hence 1 + r > 0. In order to prove the desired inequality, it suffices to

show that
¢ + 4(r + 2)%ab

> .
a® + rab + b2 2 dr +10
Indeed, we have
b2
e+ 4(r + 2)%ab a+ rb
—4r —10 b-—-—— —-10=
a? + rab 4 b2 v >4 +2)° a? + rab + b2 4r—=10
b 4(r 4 2)2 2(r + 3)
= — 4r—-10> —-—— —4r—-10= 0.
= 4(r +2)? panperiat 1 ) r —— >

Equality occurs in the given inequality when one of a,b, ¢ is 0 and the others

are equal.
Remark. For r = 2, we obtain the inequality

2 2 2
a +64bc+b +64ca+c + 64ab > 18
(b+¢)? (c+a)?  (a+b)?

*

10. Let a,b,c be non-negative real numbers, no two of which are zero, let
q,r be real numbers (r > —2) and let

b
E(a,b,c) sza + goe

+ rbe + c?
Then,
3 1 2r+ 1
a) E(a,b,c)> (q:2) , for ¢< r;r ,
2 1
b) E(a,b,c)2%§+2, for r+ §q§4(r+2)2;

¢) Elab,c >dkr+12k*—2, for q=4dk(r+2k)* k> 1.
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Solution. a) For a,b, c and r fixed, consider the linear function

a? + gbe 3(g +1)
lq‘)_zjbg—l—rbc+c2_— r+2

Since

be (b—c)?
E: — E <0
b% + rbe + 2 r+2 (r + 2)(b% 4+ rbe+ ) —

2r 41
fi(q) is decreasing Therefore, it suffices to prove that f‘(__f)—) >0

Taking into account the preceding application 7 from this section, the con-
2r + 1
7
equality occurs again fora =0 and b=c,b=0andc=a,c=0anda=1b
b) For fixed a, b,c and r, consider the linear function

2
_ a® + gbc q
q)_Z:lﬂJrrbc+c2 r+2

1
< g < 4(r + 2)?, it suffices to prove that fg(

clusion follows Equality occurs for @ = b = ¢. In the case ¢ =

2r 41

Since ) > 0 and

fa (4(r + ‘2)2) > 0 According to the preceding applications 7 and 9 from

_ ] ) 2r+41
this section, the conclusion follows For

< ¢ < 4(r + 2)?, equality
occurs if and onlyifa=0andb=c,b=0andc=a,c=0anda =25
c) Let a<b<ecand
a® 4 gbe
Ela,b,¢) = Zb2+rbc+02
In order to prove the required inequality, we consider two cases.
I Case ¢b® > c*(a 4 rb) We will show that

E(a,b,c) > E(0,b,¢) > 4kr + 12k2 — 2

For nontrivial case a > 0, we have

E(a,b,c) — B(0,b,c) a + qc® — b%(a +- re)
a b2 4 rbe - c? c2(cz+rca+a2)+

gb® —c*a +rb) _ gc® — b (a + re)
b2(a? +rab+ b2) 7 c*(c? +rea + a?) <
gb*c — b%(c +rc) _ {g=1-r)bc

~ (2 +reata?)  2(c? + rea + a?)

+
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Since

g=1—r=4dk(r+2k)? —1-r24(r+2)?2—-1-r=
=(2r+3)*+3(r +2) >0,

it follows that E{a,b,c) — E(0,b,¢) > 0.

b ¢
Letting now z = Z+ 5 Ve find

gbe b*  * 4k(r +2k)?
E(Obo)=—1° 42 4 22T —
Obe)= s tatp a4 TE 2
and
2
E(O,b,c)—4kr—12k2+2=M#-x?—élkr—-mkzz
x
_ 2
_E=Watrdl) o
r+r

II. Case c*(a+ rb) > gb®. This case implies a +rb > 0, b+ rb > 0, and
hence 1 +r > 0. In order to prove the required inequality, it suffices to show
that

2%3%24kr+12k2—2.
Since
b2
c? + gab a+,~b+a gb q dk(r + 2k)?
a? + rab + b2 qa2+rab+b2:a+rb21+r= 14+r '

it is enough to show that

4k(r + 2k)*

> dkr + 12k% =2
147

This inequality is equivalent to

ak(k — 1)(1 + r) + 4k(2k — 1)?

+22>0,
147r

which is clearly true for k > 1
On the assumption that a < b < ¢, equality occurs if and only if a = 0

b ¢
and -+ — = 2k
c b
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Remark 1. The application generalizes the preceding applications 1 - 9
from this section In addition, the inequality ¢) is also valid for r = —2, that
is

9 L 142
(b—c)?

For a = min{a,b,c} and k£ > 1, equality occurs if and only if a = 0 and
b ¢

Z+E= 2k.

Remark 2. For r = 0, we get the following inequalities-

a? + qbc g+ 1) 1
<
Zb2+c2 z2 =g for <3,
a? +qbc 1
E 2 _2+2 f()r ES(]SIG,

a? +qbc q*
3¢/ — > 16.
> = b2+c2 > 7 2, for g>16

Remark 3. For r = —1 and ¢ = 1, from b) we get the inequality

1 6
> .
sz—bc+c2"a2+b2+c?‘

1 1
Similarly, for r = ~3 and g = 5 from b) we get the inequality

1 8
> .
Zsz —be 4 2¢2 7 3(a? + b2 + ¢?)

Equality occurs in both inequalities when a = Oand b=¢, b =0 and ¢ = qa,
c=0and a=04.

Remark 4. For r = 2 and ¢ = 150, from c) we get the inequality

2.4 150bc 4% 4150 2 150
a“ 4+ 2c+ -+ 2ca_’_c+ :b237,
(b+¢) (c+ a) (a + b)

3+5
9

with equality for (a,b,¢) ~ (0, 1, ) or any permutation thereof
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7.5 Inequalities involving F; and E;

1. Let a,b,c be non-negative real numbers, no two of which are zero If

_2r+1
=—,

r>-2 a>0, afl-r)+8

then

Za2+aa(b+c)+ﬁbc> 3(1 4 2a + B)
b? 4 rbe + c2 - r4 2

2. Let a,b, c be non-negative real numbers, no two of which are zero. If

2 1
r>-2 a20, T 2 pa(r—1)< B2 rafr 1),
then )
a’® + aa(b + c) + Bbe Jé;
> 2 .
Z b2 + rbe + c2 - +2a+r+2

7.6 Solutions

1. Let a,b,c be non-negative real numbers, no two of which are zero. If

_2r+1

r>=-2, >0, a(l-r)+p 5

then
Za2+aa(b+c)+ﬁbc> 3(1 4 2a + B)
b2 + rbe + c2 - r4 2

Solution. The inequality follows by the inequality from application 7 1.5,

a(b+ )+ (r—1)be S 3(r+1)
Z b2 + rbe + 2 = r42°

and the inequality from application 7.2.7,

2a% + (2r + 1)be > 3(2r + 3)
B2 4rbect+c: T r42

Adding the first inequality multiplied by a to the second inequality divided
by 2 yields the desired inequality.

Equality occurs if and only if ¢ = b = ¢, a =0 and b = ¢, b = 0 and
¢c=a,¢=0and a=0b.
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Remark 1. The particular case # = 0 yields the following statement
e Let a,b,c be non-negative real numbers, no two of which are zero. If

2—v
>0 andr = ————, th
v>0andr 1) en

Za('ya+b+c) > 3(y + 2)
b2t rbet+c2 T r42
with equality if and only ifa =b=c,a=0andb=c, b=0andc = qa,
c=0and a="b.
For v =1 and 4 = 2, we get the inequalities
Z a > 1
42 +c?)+bc " at+bt+c’

H

a(2a+ b
respectively Note that the first inequality yields
S s 2 i
b24+c? Ta+btc’
with equality if and onlyifa=0and b =c, b =0and ¢c = a, ¢ = 0 and
a==b

Remark 2. The particular case 8 = o? yields the following statement:
e Let a,b,c be non-negative real numbers, no two of which are zero. If

1
a>0andr =a— ————, then
Aa+1)
{(a+ab)(a+ac) _ 3(1+ a)?
> 2 ,
b2 + rbe + 2 r+ 2

with equality if and only ifa =b=c,a=0andb=c,b=0and c = q,
c=0anda=">
For a = 1, we get the inequality
Z {a+b)(a+c) S 12 12
4(b6% + c®) + 3bc = 11°
Remark 3. The particular case 8 = o — r yields the following statement:
e Let a,b,c be non-negative real numbers, no two of which are zero. If
-1 14 4r

—_— -
7 <r<2anda 21’ then

> 1 9(1+a) 1
b24rbetct = r42 a?+ 62 + 2 + a(ab + be + ca)’
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with equality if and only ifa =b=c,a=0andb=¢c, b=0and c = q,

c=0 and a =b.
1
For r = 3 and r = 3 we get the inequalities

1 18
>
22(52+62)+bc — 5(a?2+ b2+t ab+betca)’
Z 1 S 27
8(b% + )+ The ~ 23(a+ b+ )2’

respectively Since

3 S 23
b2 + be + ¢ ~ 8(b2 + c?) + Thbe’

from the last inequality we obtain the known inequality

1 9
>
sz+bc+c2 “(a+b+0)?’

with equality if and only ifa=6=c.
*

2. Let a,b,c be non-negative real numbers, no two of which are zero. If

r>-2 a0, 2r+1+a(r—1)5654(r+2)2+a(r—1),
e ? 1 aafb 4 ) +6b :
a® 4+ aa(0 + ¢) + poc
>24 20+ —.
2 b2 4 rbc + c? =2+ a+r+2

Solution. The inequality follows by the inequality from application 7.1.5,

a(b+c)+(r—1)bc> 3(r+1)
2 b2 4 rbc+c2 T r+2

?

and the inequality b) from application 7.2.10,

a® + gbe g
> + 2,
Zlb"’+rbc+c2 —r42

2r 41

where < q < 4(r +2)?. Adding the first inequality multiplied by a
to the second inequality and denoting a(r — 1) + ¢ = 3 yields the desired

ine uality.



T 6 Solutions 341

Equality occurs fora=0andb=c¢c,b=0andc=a,¢c=0anda =15

t
In the case o 4+ 1

8= 5 + a(r — 1),

equality occurs again fora=b =c.

Remark The particular case 8 = a — r yields the following statement
o Let a,b,c be non-negative real numbers, no two of which are zero. If

1+ 4r r+4(2+7)? a+2
-2 al ————— yv=4+42
ST spoySeS Ty v Atset T

then

1 gl
>
Z172+'r'bc+c2 T a?4+ b2+ 2+ alab+ be+ca)’

with equality fora=0andb=c,b=0andc=a,c=0 and a=b.
For a = 1 and a = 2, we get the statement:
e Let a,b, ¢ be non-negative numbers, no two of which are zero.

1
a) If —1 Srsi, then

Z 1 3(2r +5)
b2 +rbe+ 2 = (r+2)(a2+bz+c2+ab+bc+ca)

b If ——<r<oth
VI s then

Z 1 S 4(2r + 5)
B2+ rbe+c? = (r+2)(a+b+c)?

Equality in a) and b) occurs fora=0and b=¢c, b=0andc=a,c =0

and a = b. Moreover, the first inequality becomes equality for r = ~ and

a = b = ¢, while the second inequality becomes equality for r =

N G T

and

a=b=c¢c
For r = 0, from a) and b) we obtain the inequalities

> . 15 |
b24+¢c2 = 2(a? + b2 + 2 + ab+ bc + ca)
Z > 10
b2+ ¢~ (a+b+ c)?
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7
Actually, inequality b) holds for —r; <7 < 1 where

25 — /97

Marian Tetiva proved this inequality for » = —1, that is

1 1 1 12
> ;
b2 — bc + ¢2 +cz—ca-{—az+az2—ab+b2 “(a+b+c)?

Assuming that ¢ = min{a, b, c}, we have

1 1 1
bg—bc+c2+c2—ca+a2+a2—ab+52 =
1 1 1 12 12

> — > > .
2R et T T BT (at bt o

The middle inequality is true because

ot o1t 12t 113
bB2—bc+c? 2 b2 (b+e)? Tb2—bec+cr 2 b2 b
(b—c)®

- > 0.
b2c2(b2 — be + %) ~ 0

7.7 Other related inequalities

1. Let a, b, ¢ be non-negative real numbers, no two of which are zero. Then,

a?(b+¢)? b (c+a)?  c*Ha+b)?

b% + c? + a? a? + b2 > 2(ab + be + ca).

2. Let a, b, ¢ be non-negative real numbers such that ab+bc+ ca =1 Then,

(1 + ab)? N (1 + be)? (1 + ca)?
a2 + b2+ dab B2+ c?2+4be 2+ a4 4ca

8
> <.
-3

3. Let a,b,c be non-negative real numbers such that ab + bc +ca = 1. If
r > 0, then

Z:(l-bc)z-lf—ﬁr'bc 3r+4
b2 4rbe+c? — r+2
( Vasile Cirtoaje, MS, 2006)
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4. Let a,b, ¢ be non-negative real numbers, no two of which are zero Prove
that

Vbc+4alb+c) \Jeat+dblc+a) +fab+ de(a+b)
b+ ¢ + c+a + a+b

S 9
=2

5. Let a,b,c be positive numbers. Prove that

\/a2+bc+ Vb2 +ca Ve +ab S 3v2
b+c c+a at+b — 2

(Vasile Cirtoaje, MS, 2006)

6. Let a, b, c be non-negative real numbers, no two of which are zero Prove
that

> 2

\/ 2a(b + ¢) 2b(c + a) 2¢(a +b)
(26 + c)(b+ 2¢) (2¢ + a){c + 2a) (2a + b)(a + 2b)

7. Let a, b, ¢ be non-negative real numbers, no two of which are zero Prove
that

a® + 3abe b3 + 3abc N a® + 3abe
b+ ¢ c+a a+b

) a3+3agc+b3+3algc+c3+3al;cZﬁ'
(b+¢) (c+a) (a +b) 2

> 2(ab + bc + ca),

( Vasile Cirtoaje, MS, 2005)

8. Let a,b, c be non-negative real numbers, no two of which are zero Prove
that

a’®+2%c B +2a +2b 3
>
a) b+ ¢ c+a + a+b *2( too);
a®+ 2bc b3 4+ 2be B + 2abce 1
b > = 2
) b+c + c+a t+ a+ b _2(a+b+c).

9. Let a,b, c be non-negative real numbers, no two of which are zero Prove
that

ava? +3bc+ bv/b? + 3ca N cve? + 3ab
b+ ¢ c+a a+b

>a+b+ec

(Cezar Lupu, MS, 2006)
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10. Let a,b, ¢ be non-negative real numbers, no two of which are zero. If
r >34 4/7, then

1 1 1 9
> .
ra2+bc+rb2+ca+rc2+ab“ (r + 1)(ab + bc + ca)

(Vasile Cirtoaje, MS, 2005)

11. Let a,b, c be non-negative real numbers, no two of which are zero. If

D

§5r§3+\/'7,then

1 + 1 n 1 S T+ 2
ra? +bc  rh?4+ca  rct+ab T r(ab+ be+ ca)’

( Vasile Cirtoaje, MS, 2005)

12. Let a,b,c be non-negative numbers, no two of which are zero Prove
that
1 1 1 6
p) + op2 + 5.2 e B R
202 +bc  224ca 2c2+abT at+ b +cf+abtbe+ca

13. Let a, b, ¢ be non-negative real numbers, no two of which are zero. Prove

that 1 1 i )

> ;
2242 + 5be + oop + 5ca T 2 + 5ab = (a+ b+ c)?
(Vasile Cirtoaje, MS, 2005)

14. Let a,b, ¢ be non-negative real numbers, no two of which are zero. Prove

that 1 1 1 8

> .
2a2+bc+ 2%  ca | 2 fab= (a+b+c)?
(Vasile Cirtoaje, MS, 2005)

15. Let a, b, ¢ be non-negative real numbers, no two of which are zero. Prove

that 1 i 1 12

> .
a:2+bc+b?+caJr c2+ab ™ (a+b+c)?
(Vasile Cirtoaje, MS, 2005)

16. Let a,b, c be non-negative numbers such that @ + &+ ¢ = 2. Prove that
(a® + be)(B? + ca)(c® + ab) < 1.

Vasile Cirtoaje, MS, 2005)
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17. If a,b, c are non-negative numbers, then

) a® — be N b2 — ca 4 c? —ab
¢ 202+ 524+ ¢2 2242+ a? 224 a4+ 02T
a? — be b2 — ca 2 —ab

b)

+ , + 2
IR d Vi dta Vi ai R
(Nguyen Anh Tuan, MS, 2005)

18. If a.b, ¢ are the side lengths of an triangle, then
a? — be b2 — ca c? — ab
+ + <0

302 4+ b2 4 2 3242+ a2 362 4 2 4 a2

(Nguyen Anh Tuan, MS, 2006)

7.8 Solutions

1. Let a,b,c be non-negative real numbers, no two of which are zero. Then,

a?(b+c)?  b(c+a)?  c*la+b)?
b2+c2 C2+a2 a2+b2

> 2(ab + bc + ca)

Solution. We have
a(b+c a’be
Z 2 —_Zbc—Za +22b2+c2—22bc=
2b
=2(Za _Zbc) Za ( bz+ccz) =

a (b—c

=Z(b—c Z b2 42
2
_Z( b2+c2)(b—c)2

. . . ¢ ;
Without loss of generality, assume that a > b > ¢. Since 1 — P >0, it
a

suffices to show that

(- 5) o 1) o

Write this inequality as

(a® —b? + ) (a — c)? (a® — b2 — ) (b —¢)?
>
a2 1 ¢ = b2 1 2
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We may get it by multiplying the inequalities

(a=cf _ (b=0)?

2 2 2 2 2 2
a—b+cc->a*—b"—c
= 212 = B2yl

?

The latter inequality is true since

(a —c)? 3 (b—c)?  2bc _2ac _ 2c(a — b)(ab — c?)
212 Brc Bid ad+E (Bt S

> 0.

Equality occurs fora=b=c¢,and also fora=0andb=candc=a,c =0
and a = b.

*
2. Let a,b, ¢ be non-negative real numbers such that ab+bc+ ca =1 Then,

(1 4+ ab)? (14 be)? n (14 ca)? >§
a?+b2+4ab b2 c244be i+ a+4ca T 3

Solution. Since

(14bc)  [a(b+c)+2bd°  aP(b+c)® + dabe(b + c) + 4b°¢* _
b2+ c?+4dbc bB24c?44be b2 + ¢ + 4be
_ a®(b? + ¢® + 4bc) — 2a®be + dabe(b + ¢) + 4b%c? _
N b2 + ¢2 + 4dbe
9 2a2be 4abe(b + c) 4bc?

—a _b2+c2+4bc+b2+c2+4bc b2 4 ¢ 4 dbc’

we may write the inequality in the form
1 6bc
2 a1 af  9%¢
St b - 350 (g =)+
1 2 Gbc
o — — - 1
Fg2(a’ —bo)+ 3Za(b+c)(b2+c2+4bc )+

e— =1} 2>0
3Z (b2+c2+4bc )_’

or

bzl e 1 2 albdq 2 be
Z( —¢) §+§b2+c2+4bc 6 3b24+c?44bc 3 b4+ 4be

This inequality is equivalent to

2 RY
Z(I;v—c) (b+c—a) >0,
b2 + ¢2 + dbe
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, and also fora =0

&l -

that is clearly true Equality occurs fora=b=c¢=

and b = ¢ = 1 or any permutation thereof.

*

3. Let a,b,c be non-negative real numbers such that ab+ bc+ca =1 If
r >0, then

l—bc +rbc>3r+4

(
Z172-{—r'bc+c2 T or+2 m

Solution. Since

(1=bc)® +rbec _ a®(b+c)® +rbe(ab+ be+ ca)

b2+ ¢ +rbc b2 + 2 + rbe
a? [B? + ¢ + rbe + (2 — r)be] + rbe(ab + be + ca)
- b% + ¢? + rbe -
s (2 — r)abe rabe(b + ¢) rb2c?

B2+c24rbe b2+c2+rbe B2+ c2+rbe’

we may write successively the inequality as
2—r (24 r)bc 2—r
2 2 2
—b 7 A Sl ) T -
2 (a c)+2+r2a [b2+c2+rbc }+2+1‘Z(a be)+
r (2 4+ 7)be
2+r2a(b+c) [—————52 T e 1] +

T (2 +7)be
be | 55— -1 >
+2+rZ [b2+c2+rbc 1}—0’

+

Z(b—c)2 1 2-r a’® N 2—7r B
2 2+4rb24ctirbe 2(2+47)

T a(b+c) T be

24 rb02+c2+rbe 2471 b2 424 rhe

(b—¢)?

> 2
Z172+c2+7'bc a2 0, (2)

where
Se=20"+c?—a®) +r(a— b)(a — ¢).

Assume that a > b > ¢ and consider two cases.
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[ Case 0 <r < 4. Since

Se=2(a®+b — ) +r(c—a)c—1b)>
> 2(a? + b2 — ¢?) — 2(c — a)(c ~ b)
= 2(a® —ab+ b%) + 2¢(a+b—2c) > 0,

it suffices to prove that

(b= o, (c—ap

—_— — ¢ 5 >0.
B2+ c24rbe ® 24 a2+ rea b=

Since

Spy=2a*+E—b*)+r(b—a)b—c) >
>’ + —b)+4(b—a)b—c)=2(a~b+e)? >0,

we may prove the inequality by multiplying the inequalities
Sp > —5a
and

(a—cf (b=
a2+ c2 +rac T b2+ c2 4 rbe’

Indeed, we have
Sy+ Sy =r(a—b)%+4c2 >0

and
(a—c)? B (b—c)? - (24r)ac (2+7)be
a?+c24rac  b24cidrbe a’+ct4rac b24c2+4rbe
be ac
— (2 _ _
(2+7) (b2+c2+rbc a2+c2+rac)

B (2 +7)c(a — b)(ab ~ c?) 50
(B2 4 rbe)(a? 4t +rac) T

II Case r >4 Since

Sa = 2(b* + ¢ — a®) + 4(a—b)(a—c) + (r—4)(a—b)(a—c) =
=2a—b—c)?4(r—4)(a—b)la—c)>
> (r—4)(a—b){a—c)
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and, similarly,
Sp>(r—4)b—c)b—a), S.2{r—4)(c—a)(c—0b),

to prove (2) it suffices to show that

b—c a—c¢ + a—2b >0
b24+c24+rbe c24at+rca a?+b24rab T

This inequality is equivalent to
(a—b)(b—c)(a—rc) [a2 + 62+ 4+ (1 +7)(ab+ bc+ ca] >0,
which 1s clearly true This completes the proof

Equality occurs fora=b=c= ,and alsofora=0andb=¢=1or

V3
any other permutation.
Remark 1. Since

(1—bc)2 +7be =1+ (r—2)be+ b2c® = ab+ (r — 1)be + ca + b%c?,

we may write (1) as

b —1)b b2 2 3r+4
Za +2(r )cica_{_z 2 2c > r
b2 4 rbe+ ¢ % + ¢% + rbe r+2

On the other hand,

Z b2 <Z be 1
b2 + rbe+ 2 — r4+2 249¢°

Therefore, from (1) we get

Zab+(7~—1)bc+ca > 3(1+7)
b24+rbct 2 T 247
According to this result, we may say that the inequality (1) is sharper than

the one from application 7.1 5 As a consequence, the inequality (1) for
r =2 that is

1s sharper than the well-known Iran Inequality

1 9
Z(b+c)2 22
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Rcemark 2. For r = 0 and r = 4, we get the inequalities from the preceding
applications 1 and 2 in this section. Besides, for r = 1, we obtain

1—be+b%c _ 7
3 2]
B2 tbete? T3
Remark 3. We conjecture that the inequality (1) holds true for any r > —2.
*

4. Let a, b, c be non-negative real numbers, no two of which are zero Prove
that

ﬁc+4a(b+c) N \/ca+4b(c+a) \/(E+4c(a+b) 5!
b+ ¢ ct+a a+b -

| ©

Solution. Squaring and setting A = bc+ 4a(b + ¢), B = ca + 4b(c + a),
C = ab+ 4¢(a + b), the inequality becomes

vBC 81
Z(b+c * Z(c+a) s

In order to prove this inequality, we will use the ingenious identity (due to
Sung- Yoon Kim)

(b+c)* BC—4 [a(b®+c?)+2bc(b c)+3abc]2=abc(b—c)2(a+ 4b4 4c),
which implies

a(b? 4 ¢?) + 4be(b + ¢) + 6abc
vB >
b+c

b

and hence

vBC 4Za(b2+c2)+82bc(b+c)+36abc_
22(c+a)(a+b) - (a4 b)(b+c)(c+ a) -
12" be(b + ¢) + 36abe
T @+ b+ o)(c+a)

On the other hand, taking into account Iran Inequality (see application 7 1.4)

> =

Zab4 be+ca _ 9
(b+c)2 —4°
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we have
A ab+ be -+ ca a 0 a

e AU AV > -
Z(b+c)2 2. (b+c)? +3Zb c_4+3zb+c

Then, it suffices to show that

-+

IHZbc b+ c) + 36abe
Zb+c (a+b)(b+ c)(c+ a)

This inequality is equivalent to
> ala+b)(a+c)+4 be(b+c)+12abe > 6(a+b)(b+c)(c+ a)

or
3" a% +3abe > Y be(b+ ).

Since the last inequality is just the third degree Schur’s Inequality, the proof
is completed Equality occurs for a = b = ¢, as well as for a = 0 and b = ¢,
b=0andc=a,c=0and a =b.

*

5. Let a,b,c be positive numbers. Prove that

Va2 4 be \/b2+ca+ V2 + ab S 32
b+e c+a a+b — 2

First Solution. Since

2 bte _Z(\/T %)

2a2 — p? — (2

\/§(b+c)[ 2(a2+bc)+b+c] ’

we may write the inequality as

2a% — b? — (2

2 E 20

where

Es = (b+c)y/2(a? + be) + (b+ o).
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Let us consider a < b < ¢ We have E, > Ey, since (b+¢)? > (¢ + a)? and

(b+c)Va2+be— (c+a)y/b? +ca=
_ c(b—a)(a® + b% + ¢ — ab + be + ca)
(b+e)vVaZ+be+ (c+a)vb? +ca

Analogously, we have B, > E., because (¢ + a)? > (a + b)? and
(c+a)\/b2 4+ ca— (a+b)y/c? +ab=

a(e — b)(a? + b% + ¢ 4 ab — be + ca)
(c+a)Vb2 +ca i (a+b)Ve? +ab

>0

> 0.

Since
2 — P -2 <W — 2 —a?<2? —a% - b
and
1 1 1
E, E

by Chebyshev’s Inequality we get

24 —b2—c2

Sy —2= % [Z(2a2—bz—c2)] (Z Ei) =0.

Equality occurs if and only if a =& = ¢c.

Second Solution For z,y, z positive number, the well-known inequality

holds

rT+y+z2 \/3(3:y+yz+za:)

Thus, it suffices to show that

(b2 + ca)(c? + ab)

v
2 (c+a)(a+d)

Setting a = 22, b = y?, ¢ = 22, where z,¥,2 > 0, the inequality becomes
g Y

v

3
2

‘ZZ(gﬁ+:2)\/(y4+z2a:2)(:“+9:2y2) 23($2+y2)(y2+22)(:2+x2).

The Cauchy-Schwarz Inequality gives us

VR + 22 F22?) 2% + 2%
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and

V(@ +12)( + 222) > 2%+ oy
Multiplying these inequalities yields

)Vt + 222) (21 + 2292) > (v° + 222)(B + ) =

=y3z3+x(y5+x )+x2y2z2

Therefore, it suffices to show that
’)Zy3za+‘)z z(y® + 2°) + 62?y22? > 3(z? + ) (¥? + 22)(2? + 2?).
This inequality is equivalent to

23 2+ 23 (v + 2%) 233 1R + 22

or
Zyz(y 2y +yz+22°)>0
Since the last inequality is clearly true, the proof is completed
*

6. Let a,b, c be non-negative real numbers, no two of which are zero. Prove

that
2a(b+ ) 2b(c + a) 2¢(a +b)
\/(zb o+t \/(zc T a)c+2a) \/(2a a2y =

Solution. Using the substitution a = z%, b = 2, ¢ = 22, where z,y,2 > 0,

the inequality becomes

2(y* + 22)
>2
Z \/(2y 24 22)(y? 4 222) T
We will show that

2(y% + 2%) 5 _ Ytz
(202 +22)(y2 +22%) = y2 +yz 4 22~

Indeed, by squaring and direct calculation, the inequality reduces to
y222(y — z)? > 0, which is clearly true Therefore, it suffices to prove that

Z 2x(y+Z) 221
y:+yz + 22

which is just the inequality from the application 7.1.1. Equality occurs for
a=b=cand alsofora=0andb=¢, b=0andc=a, c=0 and a = b,
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*

7. Let a,b,c be non-negative real numbers, no two of which are zero. Prove
that

a) a® 4+ 3abe B3+ 3abe  a® + 3abe
b+ c c+a a+b
a®+3abe b +3abe A +3abe 3

°) 61cp T eraP T @3 =3

> 2(ab+ be + ca);

Solution. a) We have

a® 4 3abe a® + 3abe

O YL e U

=zba (a? + be— b2 — c?) =
a{ab + ac — b? — ¢2)

a(a—b)(a—c)
_Z b+c +Z b+ec

Since

a(ab+ac—b —c?) abla—1b) acla—c) _
2 bt e =2 Thwe tTXThye
_—abla—b) ba(b—a) ab(a — b)?
Z b+¢ Z c+a _Z(b+c)(c+a)20’

it remains to show that

Z a(a —bbj—(g —c) >0

This inequality is a particular case of the following more general statement.
o If a>b>c arereal numbersand X >2Y > Z > 0, then

Xa—-b)la—c)+Y(b—c)b—a)+ Z(c—a){c—b) > 0.
Notice that the inequality follows by adding the evident inequality
Z(c—a)(c—0) >0

to

X(e=b){a—c)+Y(b—c)(b—a)>0.

To prove the latter inequality it suffices to show that X{a —¢) > Y (b—¢).
This inequality is true because X > Y anda—¢>b—¢ > 0.
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a b ¢

Returning to our problem, we set X = Ayt Y = popt VAR P

and to see that X > Y > Z >0 Equality occurs for a = b = ¢, and also for
a=0andb=c¢c,b=0andc=a,c=0anda=1%

Remark The above statement is also valid for0 < X <Y < Z We can

prove this claim by adding the evident inequality X(a — b)(a —¢) > 0 to
Y(b—c)(b—a)+ Z(c—a)(c—b)>0.

To prove the latter it suffices to show that Z(a —¢) > Y(a —b) This

inequality is true because Z > Y anda—c>a — b > 0.

b) Let a > b > ¢. Since

a3+3abc>b3+3abc>c3+3abc
b+ec — e4+a T a+b

d
an 1 1 1

> >
(b+c)2 ™ (c+a)? = (a+b)2’
by Cebyshev's Inequality we get

a®+ 3abc _ 1 a® + 3abe 1
- TS — -
Z (b4 c)3 _B(Z b+c )Z“(%Lc)2
Taking into account Iran Inequality (application 7.1.4)

Z 1 S 9
(b+¢)?2 ~ 4(ab+ be+ca)’

it is enough to show that
a® + 3abe
b
Z b+c 22 Z ©
which is just the inequality a) Equality occurs if and only if a = b = .
*

8. Let a,b,c be non-negative real numbers, no two of which are zero. Prove
that

2) a? 4+ 2%e b2 4 9a c2+‘2ab>3( b
b+ec c+a at+b —2 atbtec)
3 3 3
a® +2abc b7+ 2abe ¢ 4 2abe 1
b > L 2
) b+c cta arp Z3letbto)
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Solution. a) We have

a? + 2bc 242 4bc
22T _3(a+b+c):z(b+c_a)+Z(b+c_b_c) B
—a(2a-b—¢) (b—c)?
_Z b+ c _Z b+c

and
a(2a—b—c) ~ala—2b) a(a—c) _
2. b+ =2 5y +2 b+ec
_ a(a —b) b(b—a) _ (a — b)? _
R rrah erreral AL DN e v B
N (b—¢)?
_(a+b+c)z(a+b)(a+c)'

Therefore, we may rewrite the inequality as
S(b—¢)? S, 20,

where
Se=(a+b+ec)b+ec)—(a+bd)(a+ec).

Without loss of generality, assume that a > b > ¢. We have
Ss=(a+b+c)e+a)—(b+c)(b+a)>
> (a+b)(c+a)—(b+c)(b+a)=a® b >0,
Sc=(a+b+c)a+b)—(c+a)c+b)>
>(a+c)a+b)—(c+a)c+b)=a?-c?>0

and

Se+Sy=(a+b+c)la+b+2c)— (a+b)(a+b+2c)=
=cla+b+2c) >0
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b) Since
a® 4 2abe ad +2abe 9

a? + 2bc
=(a+b+c) Y. T —(a+b+c)?,

the inequality becomes

2 3
(a+b+¢c)) P 2§(a+b+c)2
a).

Dividing by a + b + ¢, we get the inequality a)
Equality occurs in both inequalities for a = b = ¢, and also for a = 0 and
b=c,b=0andc=a,c=0and a=b.

*

9. Let a,b,c be non-negative real numbers, no two of which are zero. Prove

that
ava? + 3be N bvb? +3ca  evVeZ + 3ab
b+e c+a a+ b

Solution. (by Yuan Shyong Ooi). By the AM-GM Inequality, we have
ava? + 3be _ 0(0,2 + 3bc)
b+ec V(b +c)2(a? + 3bc)
2a(a? + 3bc) _ 2a% 4 Gabe
T (b+e)2+ (a4 3be) S +5be

where S = a2 4 b2 4 ¢2. Since

>a+b+ec

2a% + 6abe o a® + abe — a(b? + ¢2)
Stsbe ¢ S + 5bc ’

it suffices to show that

AX +BY +CZ >0,

where
1 1 1
-  Be—__*__ -
S + 5bc’ S+5ca’c S +5ab’
X = a® + abe — a(b? +¢?),
Y:b3+abc—b(c2+a2),
Z =c + abe — e(a® + b?).
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Without loss of generality, assume that a > b > ¢ Since
A>B2>C,

X = a(a® = b*) + ac(b—¢) > 0,

Z =c(c* —b*)+ac(b—a) <0
and

X+Y+X=3 a®+3abc— Y a(t® +c%) >0
(Schur’s Inequality), we have
AX+BY+CZ>BX+BY+BZ=B(X+Y+2)2>20

Equality occurs fora =b=c,and alsofora=0and b=c¢, b =0and ¢ = q,
c=0anda=1%

*

10. Let a,b,c be non-negative real numbers, no two of which are zero. If
r>3 \/7, then
1 1 1 9
ra? 4 be TR + ca t e b ab 2 (r+ 1)(ab+be+ca)

First Solution. We write the inequality as
(r+ 1)(ab + be+ ca) Z(er + ca)(rc* + ab) >
> Q(ra2 + bc)(rb2 + ca)(rc2 + ab).
Since
S (rb? + ca)(rc® + ab) =r? 3" bPc? +abey a+ 1y be(b® 4 P,
(ab + be + ca) Z(rb2 +ca)(rc® +ab) =r by B2 (b + )+
+ r? z b33 4 (r*+r+ l)abcz be(b + ¢) + 2rabcz a® + 3a%b%e?
and
(ra? +be)(rb? +ca)(rc? + ab)=r? Z b3c® +rabe Z a3+(r3 + 1)a?b2e?,
the inequality becomes
r(r+1) sz (b2 + ) +r(r - Z b33+
+(r+ D) +r+1) ach be(b+¢) >
> r(7—2r)abed " a® + 3(r + 1)(3r? — 3r + 2)a’b?c?.
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On the other hand,
(@ —b)*(b—c)*(c—a)? =3 b2 (¥* + ) — 2% B3P+
+2abe Y be(b +c) — 2abe S a® — 6a?b?c?
Then, the inequality is equivalent to
r(r+ 1)(a = b)*(b—c)*(c—a)? +r(r? — 6r +2) > b3c+
+ (r* + 1)abe Y be(b+ ) + 7(4r — 5)abe Y a® >
> 3(r + 1)(3r* — 57 + 2)a?b?c?
Since 72 — 6r + 2> 0 for 7 > 34 /7, by AM-GM Inequality we get
r(r? - 6r 4 2) > B3+ (r + 1)abe Y be(b + ¢) + r(4r —5)abe Y a® >
> 3r(r? — 6r + 2)a®b?c? + 6(r> + 1)a?b%c? + 3r(4r — 5)a?b?c? =
3(r +1)(3r% — 5r + 2)a®b%c?,

from which the required nequality follows. Equality occurs whena = b= c.
For r = 3 + /7, equality occurs again when a = 0 and b = ¢, b = 0 and
c=a,c=0anda=0%

Second Solution (by Pham Kim Hung). Write the inequality as

> fla,b,¢) >0,

where (r + 1)(abt b )
74 1)lab+ bc+ ca )
f(a,b,c) = e —3

Since
_3dra(b+c—2a) — (r — 2)(ab— 2bc + ca)

f(a,b,c) = 2(ra? + bc) -

_ [Bra+(r—2)c)(b—a)+ [3ra + (r — 2)b)(c — a)
2(ra? + be) ’

we have

S flabe) =3 Brat+(r—2)fb—a) v [3rb + (r — 2)c](a — b)

2(ra? + be) 2(rb? + ca)

_1 B 3rb+(r—2)e¢ 3ra+(r—2) _

—2Z(a b)[ rb? +ca ra? + be ]_
1

= 2(7‘(12 + bC)(rb2 + ca)(rc2 n ab) Z(a — b)2

Ec,
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where
E. = (rc* + ab)[3r%ab + r(r — 5)(a + b)e — (r — 2)c?].

Without loss of generality, assume that a > b > ¢. Since r > 3 + /7 implies
r(r —5) > r — 2, and hence

r(r—35)(a+be—(r—2)c* > (r —2)c(a+b—¢),
it suffices to show that
3r2 > " ab(re® + ab)(a—b)* + (r—2) 3 (a—b)*S. >0,

where
S = (ré® + ab)e(a + b— ¢).

Since
3r? Zab(rc2 + ab)(a—b)2 > 3r2a?b?(a—b)? > r(r—2)ab?(a—b)?,
it is enough to prove that
ra’b*(a—b)* + > (a—b)’S. > 0.
We have
S, = (ra® + be)a(b+ ¢ — a) > (ra? + be)a(b — a),

Sy = (rb* + ca)b(c + a — b) > (rb% + ca)b(a — b) > 0,

a? a?
Sa + 75 Sy > (a—b) |—a(ra® + be) + - (rb* + ca)| =

a(a—b)*(ca—rab + bc) S a(a—b)?(—rab)

2 (b2
= 7 > ; =—ra‘(a—0b)
and S, > 0 Therefore,
S (a—b)2S. > (b—¢)*Sa + (a — )28y >
2 a’ 2 2 a?
> (b—e)*S, + b—2(b—c) Sp=(b—e)* [ Sa + 7 Sy ) >

> —ra®(b—c)*(a—b)?,
and finally
ra?b(a — b)? + Z(a — b)2S, > ra’(a — b)? [52 — (b— c)2] > 0.
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*
11. Let a,b,c be non-negative real numbers, no two of which are zero. If
)
§Sr§3+\/7, then

1 N 1 + 1 N r+2
ra?+bc  rb2+eca  rc?+ab = r(ab+ be+ ca)

Solution. We write the inequality as
r(ab+ bc+ca) Y (rb® + ca)(rc® + ab) >
> (r +2)(ra? + be)(rb? + ca)(rc? + ab)
As in preceding proof (first solution), we may rewrite the inequality as
r2Y 02 (b2 + ) =22 ST 4 r(r? 4 abe 3 be(b + ¢) >
>r(2—r)abey_a® + (r* +2r° — 2r + 2)a?b%c?,
or
r?(a =)’ (b—¢)*(c—a)* + r(r® —r + 1)abe ¥ be(b+ )+
+7(3r —2)abe Y a® > (r' +2r — 672 — 2r + 2)a?b?c?
Since 3r — 2 > 0, by AM-GM Inequality we get
r(r’—r + Labe y " be(b + ¢) + r(3r — 2)abe Y a >
> 3r(r® — r + 1)a%b%c? + 3r(3r — 2)a?h%c® = 3r3(2r + 1)a?b?e?
So, it suffices to show that
3rf@r+ 1) >rt + 2% —6r2 —2r + 2.
This inequality is equivalent to (r + 1)2(6r — 2 — r?) > 0, and is true for

2
§_<_7'S3+\/7 Equality occurs when a =0 and b = ¢, b = 0 and ¢ = g,
c=0anda="b Forr =3+ /7, equality occurs again when a = b = ¢.

*

12. Let a,b,c be non-negative numbers, no two of which are zero. Prove that

1 1 1 6
+ >
2a? + be 2b2+ca+2c2+ab_a2+bz+c2+ab+bc+ca
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Solution. Applying Cauchy-Schwarz Inequality, we have

z 1 > d(a+b+c)?
2a2 + be ~ Z(b + ¢)2(2a? + be) .

So, it suffices to prove that

2a+b+e)(a® b2+ c® +abd be+ ca) > 3y (b+ ¢)*(2a® + be).

Since
(a-i'b-i-(:)2(4512—i-b2—i—c2 + ab + be + ca) =
= (Za2 +22bc) (Za2 +Zbc) =
2 2
= (Za2) +3(Za2) (Zbc) +2(Zbc) =
=Za4+32bc(b2 +c2)+42b2c2+7abcza
and

S (b+c)?(2a® +be) = ST (b% + ¢ + 2bc)(2a® + be) =
=S "be(b® +*) + 6> b°c" + dabe " a,
the inequality transforms into
2y ot + SZbc(b2 + )+ 2abc > a2 1021)202
We may obtain this inequality by adding Schur’s Inequality of fourth degree
Z a* + acha > Zbc(b2 + %),
multiplied by 2, to
55 be(b® +¢%) > 103 b,
The latter inequality is equivalent to
5% be(b—c)* >0

Equality occurs for a = b = ¢, and also fora=0and b= ¢, b = 0 and ¢ = q,
c=0and a=5

*
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13. Let a,b,c be non-negative real numbers, no two of which are zero. Prove

that i i i ]

>
2242 + 5bc T 3o + Sca T e +5ab =~ (a+ b+ c)?

Solution. By Cauchy-Schwarz Inequality, we have

Z ] 4(a+b+c)?
2202 + 5bc = Y (b + ¢)%(22a2 + 5bc)
Therefore, it suffices to prove that
da+b+c) = S(b+ c)*(22a® + Sbe).
Since
(a+bte)=(Ta?+23 be) =
= (L) +4(La%) (T be) +4(be)’ =
=>"a'+ 43 " be(b? + ) + 62&%2 + 12abcd " a
and
D (b+¢)%(22a + Sbc) = Y (b2 + ¢ + 2bc)(22a” + 5be) =
=5% be(b® +c°) +545 b2c* + 44abe Y,
the inequality becomes
4 "t + 113 be(b? + %) + dabed " a > 30" b2c?,
or, dividing by 4,
S at+ abey a—3Y be(b® + %) + _1&5_ > be(b—c)* >0
Taking into account Schur’s Inequality of fourth degree
dat+abey a= Y be(h? + P,
the conclusion follows Equality occurs if and only if a = b = ¢.

*



364 Symmetric inequalities with three variables involving fractions

14. Let a,b,c be non-negative real numbers, no two of which are zero. Prove

that
1 1 1 8

> .
2a2+bc+262+ca+2c2+ab_ (@a+ b+ c)?

Solution. By Cauchy-Schwarz Inequality, we have

¥ 1 S 4(a+ b+ c)?
202 +bc ~ N (b+ ¢)*(2a% + be) |

Therefore, it suffices to prove that
(a+b+c)* 223 (b+ c)?(2a® + be).
Since
(a+ b+ c)4=2a4 + LIZ!)c(b2 + )+ GZbgc2 + 12acha
and
S (b+ c)(2a® + be) = D (b* + ¢® + 2bc)(2a® + be) =
=S "be(b? +c?) + 6> b%c? + dabe Y a,
the inequality becomes
S et +23 be(b? + %) + dabcS a > 63 b2t
We will prove that the stronger inequality
Za4 + fZZbc(b2 + )+ acha > 6Zb2c2.
This inequality follows by summing Schur’s Inequality of fourth degree
Za4 + acha > Zbc(b2 + cz)
to the inequality
33 be(b® +c%) > 63 b3,

which is equivalent to BZbc(b—- c)* > 0. Equality occurs if and only if
a=0and b=c,b=0andc=a,c=0and a=b.

*
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15. Let a,b, ¢ be non-negative real numbers, no two of which are zero. Prove

that
1 1 1 12

> :
tbe btca Etab> (a+b+c)?

Solution. Due to homogeneity, we may assume that a + b+ c=1 Under
this assumption, we write the inequality in the form

l—a?—bc 1—-b°—ca 1—c?—ab
+ + 29
a? + be b2 + ca c? + ab

Since | —a® —bc = (a+b }-c)2 —a?—bc > 0 and, analogously, 1 — 4% —ca > 0
and 1 — ¢2 — ab > 0, by Cauchy-Schwarz Inequality we get

1—a?—bc [Z(l_ag_bc)]g
2 a? + be 2Z(l—a,z—bc)(ag+bc)

Thus, it is enough to show that

[3 - Z(a2 + bc)]2 >
Y (a® +be) — S (a® +bc)? T

Let us denote ab + bc+ ca = z Since

Zag =1- 2z, Zl)2c2=:::2 — 2abc, Z(a2+bc): 1 — 2z,

Y ot = (Za2)2 — QZ:bzc2 =1 — 4z + 22? + 4abe,

Z(a2 + be)? = 2abe + Za4 + Zb%z =1 — 4z + 32? + 4abc,

the inequality becomes

(2 +2)?
3z — 322 —dabec = 7’

or
(1 — 4x}(4 — 7z) + 36abc > 0.

: - : ]
The inequality is clearly true for z < . Consider now that z > 1 By

B

Schur’s Inequality of third degree

(a+b+¢)® + %abe > 4(a+ b + c)(ab + be + ca),
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it follows that 1 4 9abc > 4z. Therefore
36abe > 16z — 4
and
(1—-4z)(4—Tz) + 36abe > (1—4z)(4—T7z) + 162—4=Tz(42z—1) > 0.

Equality occurs if and only if a=0and b=¢, b =0and ¢ =a, ¢ =0 and
a=b

*
16. Let a,b, ¢ be non-negative numbers such that a+ b+ ¢ = 2. Prove that
(a® 4 be)(b? + ca)(e? + ab) < 1.

Solution. Without loss of generality, assume that a > b > ¢. Since
2
a® 4 be < (a+ g)

and

(b2 + ca)(c® + ab) < %(b2 + ca+ ¢ + ab)?,

it suffices to show that
(2a + ¢)*(b® + c® + ab + ac)® < 16.

Let
E(a,b,c) = (2a + ¢)(b* + ¢* + ab + ac)

We will show that
E(a,b,c) < E(a,b+¢,0) < 4.

Indeed, we have
E(a,b,c) — E(a,b+ ¢,0) = c(b* + ¢* + ac — 3ab) < 0
and

Ela,b+c,0)—4=2a(b+c)lat+btc)—4=
=4a(2~-a)—4=—4{a—1)? <0.

Equality occurs if and only ifa=0and b=c=1,b=0andc=a =1,
c=0ande=b=1



7 8 Solutions

367

*

17. If a,b,c are non-negative numbers, then

) a? — bc + b2 — ca 4 ¢ —ab >0
¢ 202 + 02+ c¢? WP+t ta? 224240277
a? — be b% — ca c? — ab

Solution, a) Since

1 a®—bc  (b+c)?

2 22+b2+c2 2a24b24 2]

we may rewrite the inequality as

ZM<3
202 + b2 + 2

Applying Cauchy-Schwarz Inequality, we have

b2 c?
2, 12 2, 2 2
[(a® +8%) + (a® + c%)] (a2+b2 +a2+62) > (b+ )%
that is
(b + c)? < b2 4 2
202+ b2 4+ c? ~ a2 + b2 @24 ¢?
Therefore,

(b + c)? b2 c?
I +b2+czfzm+zm=
o2
_Za2+b2 sz+a2=3

Equality occurs if and only ifa = b = c.
b) First Solution (by Pham Huu Duc). Since

2a” — be) =222 + b2 + % - btc)
V2aZ + b2 + 2 V22 b2 4 2’

we may write the inequality as

(b c)?
V2a? + b2 + 2 >
2 ’ Zm

4 + >
V22 + b2+ V24 2+ a2 V2T +a? + b2
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We will show that

S e T L

a? + b2 + c?)

Using the inequality /2(z + y) > /z + /Y yields
2 1 32 4 o2
Z\/Qa +§ +c 2%Z(\@+b2+\/a2+62)22*/62+62

Using again the inequality /2(z +y) > /x + /¥ and then the Cauchy-

Schwarz Inequality, we have

3 (b+c) <y (b + c)?
\/‘)7a2+b2+c Va2 + b2 + v/a? + c*

C2 2 b2
<Z(x/a +b2 \/a2+c2> :Z:(\/b;ch2 * x/c2+b2> N
=Z,/b2+02,

which completes the proof. Equality occurs if and only f a = b = c.

Second Solution Write the inequality as

2 _
z:a Abczo’

where A = /2a2 + b2 + ¢2, B = V22 + ¢ + a2 and C = V2c2 + a? + b2,
We have

zzaz—-bc (a—b)(a+c)+(a—c)(a+b)=

(b—a)(b +c)

= +z B =

A
_ (a_b)(a+c_b+c):
(

A B
—a- a+c)®B? — (b + c)*A?
EAB (a+c)B+(b+c)Ad
. (a —b)? Ch
=2 AB (a+c)B+(b+c)A’

where

Cr=a>+b+ 2 + abla+b) + c(a® +b? +cla—b 2
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Since C) > 0, the inequality is clearly true.

Remark We can prove that for 0 < p < 1 4+ 2v/2, the inequality holds

a® — be b — ca 2 — ab
+ + >
vpat + b 4 c? \/pb2+c2+a2 \/pc2+a2+b2

Using the same method as above one, we get

Ci = (a® + 6%+ c*)(a-+ b+ 2c) — (p— 1)c(2ab + be + ca) >
> (a® + b? + )(a + b 4 2¢) — 2v/2c(2ab + be + ca)

Let a + b = 2z. Since a® + b2 > 222 and ab < 22, it follows that
C\ > (222 +c*)(22+2¢) — 2v2¢(22% 4 2cx) = 2(z +¢) (:n\/§ —c)2 >0
*

18. If a,b,c are the side lengths of an triangle, then

a? — be b2 — ca ¢ - ab
2 2 7t o3 2 7t 33 2 250
3a? + b2 +¢ b2+ ct+a b+ c?+a

Solution. We have

a? — be a—>b)a+c a—c)a+b
S SIS ST TP FCERIES)

3a2 + b2 + ¢2
B (a—b}a tc) (b —a)(b+c) B
ﬁ23a2+bz+c2 +Z3b2+c2+(,12 N

—Z(a—b)( a+c _ b+c )_
- 3a2 + b2+ ¢2 3b2 4+ 24 a2/

(a — b)?
(3224 b2 + 2)(3b% + ¢ + a?)

= (a® + b2 + ¢ — 2ab — 2bc — 2¢a) >
Since
a®4-b?+c? —2ab—2bc—2ca=ala—b—c) + b(b—c—a) + c(c—a—b) <0,

the conclusion follows. Equality occurs if and ouly if a = b = ¢

Remark We can also prove that in any triangle the inequality holds

a4 _ b2c2 b4 _ c2a2 c4 _ a2b2
Y + 373 Yy <0
et + b4+ W+ A+ a 364 + A 4 ot
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Using the same method as above, we get

5 afl _ b2c2 p (02 _ [12)2
2 Jat + b4 + 1 2 (3a + 6% + ) (3h4 4+ 1 + o)

where

P=(a+b+c)at+b—c)bic—a)cta—b)>0



Chapter 8

Final problem set

8.1 Applications

19. Let a,b,c be positive numbers such that abc = 1. Prove that

a+b b+c c+a
> 3.
\/b+1+\/C+1+Va+1—

(Vasile Cirtoaje, MC, 2005)

20. Let a,b,c be positive numbers such that abe = 1. Prove that

a+b c>§
Vers " Verz T Var3=2

(Vasie Cirtoaje, MS, 2005)

21. Let a,b,c be non-negative numbers such that a + b + ¢ = 3. Prove that

5—3bc 5—3ca 5-—3ab

> ab .
T7a T 130 T 1gec 2% tbetea

( Vasile Cirtoaje, MS, 2005)

22. Let a,b,¢,d be non-neghtive numbers such that a? + b2 + ¢2 + d2 = 4.
Prove that

(abe)® + (bed)® + (cda)® + (dab)® < 4.
(Vasile Cirtoaje, MS, 2004)
371
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23. Let a,b,c be non-negative numbers, no two of which are zero Then,

a + b N c <1
V4a+5b V4b+5c V4c+5a_

( Vasile Cirtoaje, GM-A, 1, 2004)

24, Let a1, ay,. ,a, be positive numbers Prove that

(a) (a1 +ag+- tan)? < (n—1)n1

(af +1)(af +1) (a2 +1)~ a2
ar+ag+- - +ap (2n — 1)""3
(b) 2 2 2 1 < Onan—1
(af +1)(ag+1). .(af +1) 2"n
(Vasde Cirtoaje, GM-B, 6, 1994)
25. Let ay,aq,...,a, and by,b,,. ., b, be real numbers. Prove that

2
apby+ +apbptflad+ - +a2)(bE+ - +03)> —(ar+ - +an)(bi+ - +bn)

(Vasile Cirtoaje, Kvant, 11, 1989)

26. Let k and n be positive integers with & < n, and let a;,a2,...,a, be
real numbers such that a; < a3 < - - < a,. Prove that

(a1 + a2+ -+ a5)? 2 n(a1aks1 + azaraz + - + ana)

in the following cases:
(a) for n = 2k;
(b) for n = 4k.
( Vasile Cirtoaje, CM, 5, 2005)

27. Let a,b,¢,d be positive numbers such that abed = 1. Prove that

1 1 1 1
> 1.
l1+a |—a2+a3+1+b+b2+b3+1+c+c2+c3+1+d+d2+d3_

(Vasile Cirtoaje, GM-B, 11, 1999)

28. If a, b, ¢ are non-negative numbers, then
9(a + D) + 1)(c* + 1) > 8(a®b*c® + abe + 1)2.

(Vaside Cirtoaje, GM-B, 3, 2004)
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29. If a,b, ¢, d are non-negative numbers, then

(1+&x1+wM1+&x1+f)>1+aMd
(I+a?)(1+02)(1+ 2N (1+d2) ™~ 2

( Vasile Cirtoaje, GM-B, 10, 2002)

30. Let a,b,c be non-negative numbers, no two of which are zero. Then,

1 1 1 9
> .
a2+ab+b2+b2+bc+c2 +¢:2+ccz+a2 “(a+b+c)?

(Vasie Cirtoaje, GM-B, 9, 2000)

31. Let a,b,c be positive numbers, and let
1 1 1
—a+--1,y=b+=—1 z=c+—~—1.
r=a+ b » Y + - y Z2=C+ 2
Prove that
ry+yz+z2x>3
(Vasie Cirtoaje, GM-B, 1, 1991)
32. Let a,b, c be positive numbers, no two of which are zero. If n is a positive
integer, then
20" — b — " +2b"—c"-a" 2" - a™ - b
b2 — be + ¢2 c? - ca + a? a? —ab+ b2
(Vasde Cirtoaje, GM-B, 1, 2004)

33. Let 0 < a < band let ay,a9, ..,a, € [a,b]. Prove that

2
a1 +ay+- -+an—nYa1ay.. an < (n— 1)(\/5—\/5)
(Vasile Cirtoeje and Gabriel Dospinescu, MS, 2005)

34. Let a,b,c and z,y, z be positive numbers such that z+y+2z =a+b+ec
Prove that
ax? + by? + cz? + xyz > dabe

(Vasile Cirtoaje, GM-A, 4, 1987)

35. Let @,b,c and z,y, z be positive numbers such that 2 +y + z = a4+ b+¢
Prove that

z(3z + a) + y(3y + a) N z(3z + a)

> .
be ca ab 2 12
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36. Let a,b,c be positive numbers such that a? + b2 + ¢* = 3. Prove that

o

9

t a+b+e

c

ol B

+i2
a

37. Let ay,as,...,a, be positive numbers such that ajas...a, = 1. Prove
that

1 4 1 + + 1 4 4n > 49
— — 4 4 — n+ 2.
ay ap an n+a t+a+---+ay
(Vasile Cirtoage, MS, 2005)
38. Let ay,as, ..,an be positive numbers such that ajas. .a, = 1. Prove
that
aal 1 1 1
art+ax+---+an—n+lz2 —+—+-t+—-—n+l
ai az an

( Vasile Cirtoaje, MS, 2006)

39. Let r>1 and let a, b, ¢ be non-negative numbers such that ab+bc+ca=3.
Prove that

a"(b+c)+b"(c+a)+c"(a+b) > 6.

40. Let a,b, c be positive real numbers such that abc > 1 Prove that

(Vasile Cirtoaje, CM, 4, 2005)
41. Let qa,b,c,d be non-negative numbers. Prove that
él(a,3 + 81t d3) + 15(abc + bed + cda + dab) > (a + b+ c+ d)3.

42, Let a,b,c be positive numbers such that

1 1 1
@+b-0(;+5-7) =4

Prove that
1 1

1

( Vasile Cirtoaje, MC, 2005)
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43. Let a,b, ¢ be positive numbers Prove that

1 1 1 2
a2+2bc+b2+2ca+c2+2ab> ab+bc+ca’

(Vasile Cirtoaje, MS, 2005)

44. Let a,b, ¢ be non-negative numbers, no two of which are zero. Prove

that
a(b+c)  blc+a) c(a+b)> ab+be+ca

a?+2bc b2 +2ca 2 +2b T a? + b?2 +¢?
(Vasile Cirtoage, MS, 2006)

45, Let a,b,c be non-negative numbers, no two of which are zero. Then

b+eP | (etal @b
a2 +bec  b24+ca  c24ab T

(Peter Scholze and Daryj Grinberg, MS, 2005)

46. Let a,b,c be non-negative numbers, no two of which are zero Then

b+c c+a a+b 6
>
2a2+bc+2b2+ca+2c2+ab_a+b+c

( Vasile Cirtoaje, MS, 2006)

47. If a,b,c are non-negative numbers, then

ay/a? + 3bc + by/b2 + 3ca + ev/c? + 3ab > 2(ab + be + ca).
(Vasile Cirtoaje, MS, 2005)

48. Let a,b, ¢ be non-negative numbers, no two of which are zero. Then

a? - be . b? — ca N c® —ab >0
Vel +be VB2 +eca Velyab T
(Vasile Cirtoaje, MS, 2005)

49. If a,b, ¢ are non-negative numbers, then

(a® — be)y/a? + dbe + (b2 — ca) /b2 + dea+ (¢ — ab)y/c? + 4ab > 0

(Vasile Cirtoaje, MS, 2005)
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50.

51.

52.

53.

54.

395,

56.

Il a,b, c are positive numbers, then

a® —be b2 — ca c? —ab

\/Sa (b+ c)? \/8b2 (c+ a)? \/8c2 (a +b)?

( Vasile Cirtoaje, MS, 2006)

Il a,b, ¢ are non-negative numbers, then

\/a2+bc+ \/bg—{-ca—{-\/c?—{-abg

(a+b+c)

o] o

(Pham Kim Hung, MS, 2005)
Let a,b,c be non-negative numbers such that a® 4+ b% 4 ¢? = 8. Then,
21 + 18abc > 13(ab + be + ca)
( Vasile Cirtoaje, MS, 2005)

Let a, b, c be non-negative numbers such that a® + b® + ¢2 = 3. Then

1 1 1
<
5—2ab 5-—‘2(;»c+5—2ca_1

(Vasile Cirtoaje, MS, 2005)
Let a, b, c be non-negative numbers such that a? + b2 + ¢ =3 Then,
(2 —ab)(2—bc)(2—ca) > 1.
(Vasile Cirtoaje, MS, 2005)

Let a,b, ¢ be non-negative numbers such that a - b+ ¢ = 2 Prove that

be + ca + ab
a?+1  b24+1 2+1

<1.

(Pham Kim Hung, MS, 2005)

Let a, b, c be non-negative numbers, no two of which are zero. Then,

a® + 3abe b3 + 3abe 4 A + 3abe
b+ " (eta® " (arbR =

>a+b+c¢

Vasile Cirtoaje, MS, 2005)
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57. Let a.b.c be positive numbers such that ¢* + b4 + ¢! =3 Then,

2 2 2
a b c
e T T N 1
a) b+c+a“3,
2 2 2
a b c 3
b > 2
) rretiratarsn

(Alezey Gladkich, MS, 2005)

58. Il a,b. c are positive numbers. then

a3~-b3+b3—c3+c3—cz3 < (@a=b)2+(b—-¢)2+(c—-a)?
a+b b+e c+a — 8

(Maran Tetiva and Darj Grinberg, MS, 2005)

59. Let a,b,c be non-negative numbers, no two of which are zero Prove
that

a? b2 c?

o tb)2at o) T Bt a) (et a)2e10)

< 1
— 3 -
(Tigran Sloyan, MS, 2005)

60. Let a,b.c be non-negative numbers, no two of which are zero Prove
that

1 1 1 1
> .
'5(a? + b2) — ab + 5(b2 + ¢2) - be + 5(c2 +a?) ~ca = a2 4 b2 4 2

(Vasile Cirtoaje, MS, 2006)

61. Let a,b, ¢ be non-negative real numbers such that a2 +524+¢2 =1 Prove

that
be ca ab 3

<
u2+1+b2+1+c2+1 — 4
(Pham Kim Hung, MS, 2005)

62. Let n,b, ¢ be non-negative numbers such that a2 + b2 +¢2 =1 Prove

that
1 1 1 9

< =,
3ta?—2bc 3707 —2ca 3+ _2ab =3
(Vasile Cirtoaje and Wolfgung Berndt, MS, 2006)
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63. If a,b, ¢ are positive numbers, then
4a® — b? — ¢? N 462 — % —a?  4c% - a? - b2 <3
a(b+ c) b(c + a) + cla+b) —
(Vasile Cirtoaje, MS, 2006)

64. If a,b, c are positive numbers such that abec = 1, then

3 1 1 1
a4+ 6> (a+b+c+—+—+—)
2 a b ¢

(Vasile Cirtoaje, MS, 2006)

65. Let a;,as, .,a, be positive numbers such that a; + a2+ - +ap,=n
Prove that
1 1 1
alag...an(—+—+---+————n+3) < 3.
al ag an

( Vasile Cirtoaje, MS, 2004)
66. Let a,b,c be the side lengths of a triangle If a® + b2 + ¢? = 3, then
ab + be + ca > 1 + 2abe.
(Vasile Cirtoaje, MS, 2005)
67. Let a,b,c be the side lengths of a triangle. If a? 4 % + ¢% = 3, then
a+b+c>2+abe
(Vasile Cirtoaje, MS, 2005)

68. If a,b, c are the side lengths of a non-isosceles triangle, then

a+b b+ec
a) AL e i N T
a~-b b—c c—a
; a2 + b2 b2 4c? % 4 af 5
) PR T R_ 2tz g2~

(Vasde Cirtoaje, GM-B, 3, 2003)

69. Let a,b,c be the lengths of the sides of a triangle. Prove that

a2(ﬁ—1)+b2(f—1)+c2(3—1)20.
¢ a b

( Vasile Cirtoaje, Moldova TST, 2006)
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70. Let a,b,c be the lengths of the sides of an triangle. Prove that

1 1 1 a b c
LS4 > .
(a+b+c)(a+b+c) _6(b+c+c+a+a+b)

(Vietnam TST, 2006)

71. a,a,as,q4,as,a6 € ,V 3|, then

a — a ag — ag ag — Q1
ag +az a3+ a4 a) +ag —

( Vasile Cirtoaje, AJ, 7-8, 2002)

72. Let a,b,c be positive numbers such that a? + b2 + ¢ > 3 Prove that

5 2 5 __ 12 5 9
a b c >0

a5+b2+c2+a2+b5+c2+a2+b2—+—c5 =

( Vasile Cirtoaje, MS, 2005)

73. Let a,b,c be positive numbers such that x +y + 2 > 3 Then,

1 1 1

+ + <L
B ty+z z4+y3+z zHy+ 22

(Vasile Cirtoaje, MS, 2005)

74. Let z1,79,. .,z, be positive numbers such that zjzy. .2, > 1.
If @ > 1, then

(Vasile Cirtoaje, CM, 2, 2006)

75. Let x1,29,..., 2z, be positive numbers such that ;z9 ..z, > 1.

If n >3 and

2~<_(.1f<1,t.hen

a2
253 e S
ry +r2+ +Ip

(Vasile Cirtoaje, CM, 2, 2006)
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76. Let x1,29,.. ,x, be positive numbers such that xjzq. .2, > 1
If @« > 1, then

Ty
Yoimr st
riy +ra+ + ZTn
( Vasile Cirtougc, CM, 2, 2006)

77. Let z1,79,...,x, be positive numbers such that z;zy.. z, > 1.
If -1~ d‘)5a<1,then
T
YT > 1
Iy +x9l - +2pn

(Vasile Cirtouje, CM, 2, 2006)

78. Let n>3 be an integer and let p be a real number such that 1 <p<n—1

—-p-1
If 0<ay,zo,. .,an&—such that r1z9.. T, = 1, then
pln—p-1)
1 1 1 n
>

+ + -+ > .
1+pr; 14 pre l14+prn ~14p
(Vasile Cirtooje, GM-A, 1, 2005)
79. Let a,b,c be positive numbers such that abc =1 Prove that

1 1 1 5
(T+ap T T+02 (Tt ef T @ra(+00 40

(Pham Van Thuan, MS, 2006)

80. Let a,b,c be positive numbers such that abe =1 Prove that
a2 + 82+ 4 9(ab t be+ ca) > 10{a+ b+ c)

81. Let «,b, c be non-negative numbers such that ab + bc + ca = 3 Prove

that
a(b? +c?)  b(c*+a?)  c(a’+ b?)

a? + be b2 + ca + ¢ + ab
(Pham Huu Due, MS, 2006)

82. Il n,b, ¢ are positive numbers, then

2 2 2 2,12, A2
at b ¢ G(a* + b* + ¢*)
— =+ —=>
a+b+c+b+c+a_ a+b+e

(Pham Huu Duc, MS, 2006
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83. If a,b, ¢ are positive numbers, then

a? b? 4 c? 3(a® 4+ b% + %)
b+c+cl-a a+b™ 2(a?+ b2 4 c?)

(Pham Huu Duc, MS, 2006)

84. ifa,b, c are given non-negative numbers, find the minimum value F(a,b, ¢
of the expression
az by cz

E= +-
y+2+2+:r z+y

for any positive numbers z,y, 2.
(Vasile Cirtoaje, MS, 2006)

85. Let a.b,c be positive real numbers such that a 4 b+ ¢ = 3. Prove that

1 1 1 _ 5 4 o
FtmEtazd+b+d

(Vasile Cirtoaje, Romania TST, 2006)

86. Let a,b. c be non-negative real numbers such that a + b + ¢ = 3. Prove
that

(a® — ab + b2)(8? — be + c?)(c? — ca + a?) < 12.
(Pham Kim Hung, MS, 2006)

87. Let a,b, c be non-negative real numbers such that a + b+ ¢ = 1. Prove
that

\/a+b2+\/b+c2+\/c+a222
(Phan Thanh Nam)

88. If a.b. c are non-negative real numbers, then

a® + 8% + ¢ + 3abe > Zbcﬂ?(b2 + ¢2).

89. If a,b, ¢ are non-negative real numbers, then
2 2 2y 19 2
(1+a*}(1+b%)(1+4c¢ )2ﬁ(1+a+b+c) :

(Vasile Cirtoaje, MS, 2006)
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90. Let a,b,¢,d be positive real numbers such that abed = 1. Prove that
(14+a>)1 41+ +d*) > (a4 b+ c+d)’.
(Pham Kim Hung, MS, 2006)

91. If z;,z2,. ,z, are non-negative numbers, then

wit+ai+ -4 el
n

itz t+  + I 2 (n-— 1)m+\/
( Vasile Cirtoaje, MS, 2006)
92. If k is a real number and z1,z,,. .,z, are positive numbers, then
(n=1) (27 427t . toptt) tzizy za (2f o+ 4 2h) 2>
> (g +2a+ - - 4zn) (a7 R gt
(Gjergyi Zaimi and Keler Marku, MS, 2006

93. Let a,b,c be non-negative numbers, no two of which are zero. Prove
that A A A
a 4 b 4 c > a+b+c .
ad+b  B+3 3443 2

8.2 Solutions

1. Let a,b,c be positive numbers such that abe = 1. Prove that

a+b b+ec c+a
>
\/b+1+\/c+1+\/a+1 23

Solution. By AM-GM Inequality, it follows that

a+b b+c ¢c+a of (@+ b)(b+c)(c+ a)
\/b+1 +\/c+1 +\/a+1 23\/(b-kl)(c-l-l)(a+1)

Thus, we still have to show that

(a+b)b+e)(c+a)> (a+1)(b+ D)(c+ 1)

Let A=a+ b+ cand B = ab+ be + ca. The AM-GM Inequality yields
A>3 and B>3 Since

(a+b)(b+c)e+a)=(a+b+c)(ab+ bc+ ca) —abc= AB -1
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and
(@+1}b+1)(c+1)=A+B+2,

we have

(a+b)b+c)c+1)—(a+1)(b+1)(c+1)=
=AB-A-B-3=(A-1)(B-1)—-4>2-2—-4=0
Equality occurs fora=b=c=1.

Remark The inequality holds for the extended condition
ab+bc+ca>3

Letting a = tz, b = ty and ¢ = tz, where t > 0 and z,y,z > 0 such that
xy + y2 + zx = 3, the inequality

(@+B)(b+c)ct+a)> (a+ 1)b+1(c+1)

becomes
(z+y)(y+2)(2 +2) 2 (a:+%) (y+%) (z+%).

From ab+bc+ca > 3 weget t > 1. It is easy to see that it suffices to consider
only the case t = 1, which is equivalent to the condition ab+ bc+ca =3 In
this case, from

(a+b+c)* > 3(ab+ be + ca)

we get a + b+ ¢ > 3, and from ab + be + ca > 3Va2b2c? we get abe < 3.
Finally,

(a4 b)(b+c)ec+a)—(a+1)(b4 1)(c+1) =
=(ab+bctca—1)a+b+c—1)—2(1 + abe) =
=2(e+b+ec—-3)+2(1—abc)>0

*
2. Let a,b,c be positive numbers such that abc = 1. Prove that

a b c

b+3+ c+3+ a+3

3
> =,
-2
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z
Solution. Settinga=—,b=—, c= E, the inequality becomes
T z

T
Y

Y z

x
Vy(3z + z) * \/z(3y+:r) * \/:r(Bz-{-y) =

o

1
By Jensen’s Inequality applied to the convex function f(t) = W, we get
x Yy z

i >

Vil +a) | VeGyra  JeGata)
r+y+z

>(z+y+ z)\/xy(303 +2)4+yz(8y + ) + 2z(3z + y)

Using this result, it is enough to show that
3 2 2, .2 .
dx+y+2)°>27(x“y+y 2+ 2°c + xyz).

Let x = min{z,y,z} Denotingy =z +p, 2 =24 q (p,q = 0}, the
inequality transforms into

9(p” —pg +¢°) + (a— 2b)*(4a + b) > 0,
which is clearly true. Equality occurs only fora =b=c =1

*

3. Let a,b, c be non-negative numbers such that a + b+ ¢ = 3. Prove that

5—3bc 5—3ca 5-—3ab

>ab+ b ;
T7a T 140 " 1ge Zo0toctca

Solution. Let s = ab+ be + ca. The well-known inequality
(a4 b+ ¢)? > 3(ab + be + ca)

implies s < 3. We write now the inequality as follows:

5 — 3be 5— 3ca 5 —3ab
- b — ) —ab) 20
(1+a C)+(1+b ca+(1+c a)—’
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5—4bc—abc+ 5—4ca—abc+ 5 — 4ab — abc >
l14a 14+ l+e¢

> (14 b)(1 + ¢)(5 — 4bc — abe) > 0,

2(4 — a + be)(5 — 4be — abc) > 0,

45 + 3abc > llzbc+ 42:11%2 + achbc,

45 + 27abe > 11s + 4s® + abes.

Since s < 3, it suffices to show that

45 4 24abe > 11s + 4s2.

For s < e we have

99 81
45+24abc—lls~432245—113—432>45—I—T=0.

9
Consider now 1 < s < 3. By Schur’s Inequality

(a+ b4 ¢)® + 9abe > 4(a + b + ¢)(ab + bc + ca),
it follows that 9 + 3abc > 4s. Then,

45 + 24abc — 115 — 45% > 45+ 8(4s — 9) — 11s — 45% =
=21s— 27— 45> = (3—5)(45—9) > 0,
which completes the proof. Equality occurs for (a,b,¢) = (1,1,1) and also

33
for (a,b,c) = (0, 7 3) or any cyclic permutation
*

4. Let a,b,e,d be non-negative numbers such that a® + b2 4 2 + d? = 4.
Prove that

(abe)® + (bed)® + (cda)® + (dab)® < 4.
Solution. Setting z = a%, y = b2, 2 = ¢? and t = d?, the inequality becomes

(zyz)¥% + (y2t)*? 4 (2t2)%? + (1zy)*? < 4,
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where z,y, 2 and t are positive numbers such that z + y + z 4+t = 4. By
AM-GM Inequality, we have

l+r+y+224Yzyz.

Thus,
1 2 5—1\2 5— 12
s (LY (5ot e (B0,
4 4 4
Analogously,

5 2 5 2 5— 2
(yzt)*/? < (TI) yat, (ztz)*/? < (_4_‘_(;) ztx, (tey)/? < (_4_::) try.

Taking account of these inequalities, it suffices to show that

5 —t\2 5— 12 5—1y\2 5—2\2
(T) TYz+ (Tm) yz‘*(Ty) 2+ (Tz) try < 4

This inequality is equivalent to E(z,y, 2,t) < 0, where
E(z,y,2,t) = 25(xyz + yzt + 2tz + tzy) — 64 — 36xy2t.

Without loss of generality, we may assume that z > y > z > t. We will
show that E is maximal for z = 2z, and hence for £ = y = z To prove this,
it is enough to show that = > 2z implies

T+ 2z r+z
E(m,y,z,t)<E( RN ,t).

Indeed,
B(EEE 0 T2 1) - Blan) =
_ 25(y+f;l)—36yt (z—2)% > 25(y+t);9(y+t)2 (x—2)? =
SCEDLELCED) PR
since
y+t:y+t+y+t <y+t+:r:+z:2

2 2 T 2 2
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We need now to show that F(z,y,z,t) <0 for z =y =2 < ~. We have

w+.s>.

4(27x* —- 862 + 7527 — 16) =

E(r,r,z,4— 3x) = 4(
= 4(z — 1)3(272% — 322 — 16) < 0,
)

since 27x2 — 322 — 16 = 9(3z — 4) + 4(x — 4) < 0. This completes the proof
Equality occurs fora=b=c=d =

*

5. Let a,b,c be non-negative numbers, no two of which are zero. Then,

[a +/ b +/ c <1
4a + 5b 4b 4 5c¢ de 4+ S5a —

Solution. If one of a,b, ¢ is zero, the inequality is clearly true. Otherwise,

c a
settingr = —, y = 5 and 2 = — (such that zyz = 1), the inequality becomes
a c

1 1 1
+ +
vi+5z 4+5y JE¥5z
Assume now that £ > y > z. The condition zyz = 1 yields = > 1 and
yz < 1. We may obtain the inequality by adding up the inequalities
1 1 2
+ < ,
vVi+5y 4+ 52 \/4+5\/y_z
1 2
+ <1
VaFSz [+ 5yz

The former inequality is satisfied as equality for y = 2. For y > 2, let us

z
denote s = and p = /yz(s > p,p < 1). Squaring and dividing then
10(s — p) . .
y , the inequality becomes successively
(4+5p)y/(4 + 5y)(4 + 52)
1 1 2 2 2
+ - < - ,
445y 4452 4+5p~ 445p \/(4+5y)(4+52)
Sp—4 < 8

V(4 +5y)(4+52) ~ 4+5p+ /(4 +5y)(d +52)
25p% — 16 < (12 — 5p)y/25p2 + 40s + 16
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The last inequality is true because

(12 — 5p)y/25p? + 40s + 16 — 25p” + 16 >
> (12 — 5p)4/25p2 + 40p + 16 — 25p% + 16 = 2(8 — 5p)(5p + 4) > 0

To prove the latter inequality,

1 2
+ <l
V4 + 5z \/4+5,/yz

2
let /4 + 5,/yz = 3t, §< t <1 Since

the inequality becomes
922 — 4 2
+ = <
3v3614 —32t2 + 21 3
(2 - 3t) (v/36¢* — 3262 +21 — 3¢ — 2t) < 0.

?

Since 2 — 3t < 0, we still have to show that 1/36t% — 32¢2 + 21 > 322 + 2t
By squaring, we get
ot — 4 — 12t + 7> 0.

This inequality is equivalent to
(¢t —1)%(9t* + 14t + 7) > 0,

which is clearly true. Equality in the given inequality occurs if and only if

a=b=c
*
6. Let a1, a2, . ,an be positive numbers. Prove that
(a1 4+ az + -+ + an)? (n—1)"!
a) 2 2 3 < 2 !
@+ D@+ @+ =
b) a +ap+- -+ ay <(2n—1)"‘%

(a?+1)(ad +1). (a2 +1) anpn-1
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Solution. (by Gabriel Dospinescu) a) Let m be a positive integer (m > n),

2

and let a; = —11 foralli Assumethat z;< - - <1 <1<z 1< - L2y,
m—

By Bernoulli’s Inequality we have

(P T+ = () T (2 1) -

=1 [

=ﬂ(1+$?;1)=ﬂ(1+$‘?£1) f[ (1+‘T‘2n:1)2

i=1 i=k+1

k9 n 2
| -
2(1+§ = ) 1+ 3 Hol) o

:#(m?+...+x%+m—k) (m+k_n+$ﬁ+1+"'+xi).

Applying now the Cauchy-Schwarz Inequality to the m-tuples

(z1, ,zi,l, ,Dand(1,. ,1,zkp1,  ,Zn),
we get
($f+ -+a:f_.+m—k)(m+k—-n+z?€+1+---+zfl)2
2(z14+ Azt m—nto+ - Hze) =
=(m—n+z +x2+ -+ z,)%,
and hence

n

— n
() T +0) 2 m—n bz bzt -+

m i=1
or n 2 2
9 m"t~ m-—n
T 4+1) > - e
Equality occurs wh !
0 whena; =ay =+ =ap = ———.
q y 1 2 n \/;rnTl
a) Choosing m = n, we get the desired inequality. Equality occurs for
1
n—1
b) Since
2
m-—n 4(m —n
( m_1+al+a2+ +an) = (m_l(al+a2+"'+an))
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we get
n -2
4m"**(m —n
(af +1) 2 ) (o 40+ 40,
i=1 (m—1)""2

Choosing m = 2n, we get the required inequality Equality occurs for

1
=09 = - = Oy = —.
M T -1
*
7. Let aj,as,. .,a, and by,bs,.. ,b, be real numbers. Prove that

2
(a1+---+an)(br+- -+bn)

arbi+- - +anbntfai+ - +a2) (24 + b)> ~

First Solution. Write the inequality as

\/(a§+---+a,%) (b +---+b2) > a1(2b— b1) + -+ + an(2b— by),

by +ba+---+b
where b = ! 2 = Setting now z; = 2b — b; for all indices 2, we
n

have

S ? = $ (482 — abb; + 82) = dnb® — 463 by + 382 = YO8,

and the inequality reduces to

\/(a¥+- -+a$l) (a:¥+- +:r;"l)2a1m1+- '+ apTy,

which is just the Cauchy-Schwarz Inequality, This completes the proof In
the case ajas . an # 0, equality occurs for

% b  2b— by 2 — by,

a) as 429

> 0.

Second Solution Consider the nontrivial case a? 4 a2 4 -+ + a2 > 0,

N R
af +aj+- -+ a2

denote

and use the substitution b; = zz; for all i We see that

2 2 2
adtaj+ - +al=a2t 4254 422
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The inequality becomes
alml+a2m2+---+anmn+af+ag+-- -i—afl >
2
2;(a1+a2+ ctap)zy o+ -+ zh),
or
(a1 +71)° + (a2 + 22)* + - + (an +2zn)2 >
4
2 —(ai+ax+ - +an)(zi+ o2+ -+ 2a).
Since

(a1 +aa+ - +an)+(x1+ae+ - +aa)* 2
>4(ar +az+ -+ an)(zi Hz2 + 0+ zh),
it suffices to show that
(a1 +21)* + (a2 + 22+ +(an+20)* 2
2%[(01 tagt - Hap)+(zy+za+- -+ za)P.
This one reduces to the well-known inequality

n(vi+vi+ +¥3) 2wty + o +w)d

where y; = a; 4+ z; for all 7.

1
Remark Setting b; = o for all ¢, we get the following inequality

1

1 1 1
n2+n\/(a%++ag+..-+a%) (?-{—a—%.*__*_zé.) >

1 n

1 1 1
_g(al+a2+"'+an)(a—l+£+"+E—)-
n

For even n (n = 2k) and a; < a3 < -+ < ay, equality occurs when
a; =az =- =aand a4y = Qppp = -0 = ;.

For odd n, equality occurs only when a; = az = --- = a,. We conjecture
that for odd =, the following stronger inequality holds

1 1 1
2 2 _ 2 2 . _

1 1 1
22(a1+a2+---+an)(a—+a—+---+;—).
i 2 n
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Ifaj < a3 < - <a, and n =2k + 1, equality occurs for either

ai=ay=---=a;and apy] = Qky2 = = A2k4ds
or
a1 =ay=-"-=ap41 and Qpy2 = Qg3 = - = Qok41-
*
8. Let k and n be positive integers with k < n, and let a;,as,...,an be real

numbers such that a; < a3 < .- < a,. Prove that

(ai +az+ -+ an)2 > nlayap .y + agakys + - + anag)

in the following cases:
a) forn =2k;
b) for n = 4k.

Solution. a) We have to prove that
(ay + az + - + ag) > dk(arak+1 + agaria + - - + aragk).
Let x be a real number such that a < z < a;,,. We have
(z —ar)(aksr — ) + (z —az)(aks2 — )+ -+ (z —ar)(eax —2) 20
This can be manipulated into
dkz(a; +ag + - + agk) > 4k*z? + dk(arapqr + agaris + - + aragk).
Summing this inequality to
(ay +ag + - - +ag)? +4k*2% > dkz(a) 4 a2 + - -+ + ag)

ylelds the desired inequality. Equality occurs for

@ tax+ -+ ag
Aj+1 = Qj42 = " T Gk = ok )

where j € {1,2,...,k—1}.
(b) We have to prove that

(ar +ag +- -+ ask 2 > dk(ararsr + azars2 + - - + asear
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The imequality is equivalent to
(bi+b2+ -+ bok)® 2 4k(bibis bbabrya+ -+ brbar),

where b; = a; + ag4s for 1 <7 < 2k, Since by < by < -+ < by, this is just
the preceding inequality. Equality occurs for

:f G+l = Qjp2 =+ =0j4p =4
{ Qjiok+1 = Qjpoki2 = = @jy3k = b,
i ap +az+ -+ ag =2k(a+b)

where @ < b are real numbers and j € {1,2,. ,k~ 1}

n
Remark Actually, the inequality is valid in the more general case 2 < T < 4.

*

9. Let a b,c,d be positive numbers such that abed = 1. Prove that

1 1 1 1
>
1+a+a2+a3+1+b+b2+b3+1+c+c2+c3+1+d+d2+d3 -

1.

Solution. The inequality can be obtained by summing the inequalities

1 1 1
>
[tata?+a® 1104018 2 1+ (ab)?/2’
1 1 1 (ab)3/?

> =
l+c+62+c3+1{—d+d2+d3‘_1+(cd)3/2 1 + (ab)3/?
Each of these inequalities is of the type

1 1 1
>
1422 + 24 + 26 i_1+_z,;2+g,f4-i-y5 T 14233

where z and y are positive numbers. Using the substitutions p = zy and
s =z? + 2y + 3% (s > 3p), the inequality becomes as follows:

PP (2 +1%)+ PP (p— 1) (2 +3*) P (0>~ p+ 1)(22 +42) —pC —p* + 2p° ~p2 +1 >0
P2 =*)2 + PP (p—1)(2*~4*)? - P (PP —p + 1)(z—y)? + PP —pl—p?+1 > 0,
Po(s + 1)(ps — 1)(z ~ y)* + (p* = 1)(p* ~ 1) > 0.
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If ps — 1 > 0, then the inequality is clearly true Consider now that ps < 1.

1
From ps < 1 and s > 3p, we get p? < 3 Write the inequality in the form

(1-p*)(1—-p") 2 p*(1 + 5)(1 - ps)(z — v)*.

Since
plz—y)2 =ps—3p* <1-3p* < 1—p°

it suffices to show that
1—p* > p(1+s)(1—ps)

Indeed, we have

1 1+p)?  1+p?
p(1+8)(1 - ps) < S lp(1 4+ ) + (1 —ps)2 = LEEE < 2EPD g
Equality occurs if and only ifa=b=c=d = 1.
*

10. If a,b, ¢ are non-negative numbers, then
9(a* + 1)(b* + 1)(c* + 1) > 8(a®b*c® + abc + 1)%.

Solution. If at least one of a, b, ¢ is zero, then the inequality becomes trivial.
Consider now that a,b, ¢ are positive numbers For a = b = ¢ the inequality
reduces to

9(a* + 1)® > 8(a® + a® + 1)?,

or
1,3 1 2
9(a2+-5) 28(a3+-—3-+1)
a a
1
Setting a + =T the inequality can be written as follows

9(z? —2)% > 8(z% — 3z +1)?,
2% — 62% — 1623 + 362% + 48z — 80 > 0,
(z —2)? [:r(:r3 —~8)+4(z* —35) + 6:r2] > 0.

Since z > 2, the last inequality is clearly true. Multiplying the inequalities

9 a't1°%>8 aS+a+1)?, 9(b1+1 3>8(b+6°+1)%, 9(c'+1)%>8(P+c3+1)?,
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yields
[9¢a® + 1)(b* + 1)(c* + 1)]3 > 8%(af + a® + 125 + b2+ 3B + 3 +1)2
Using now Holder’s Inequality
(a®+a®+ 1)(B® 4+ 8% + D)(c® + 2 +1) > (a®h2c? + abe + 1)8,
the conclusion follows Equality occurs only fora =b=c¢ = 1.
*

11. If a,b,c,d are non-negative numbers, then

(1+a®(1+ 831+ 3)(1+d3) , 1+ abed
(1+a2)(1+862)(1+c?)(1+d?) = 2

Solution. For a = b = ¢ = d, the inequality becomes

al + 1 4>a4+1
at+1/ = 2 -

a®+1\* ad+1\*_ at+1
> >
a?+1/ “\a+1/) = 2
The left side inequality is equivalent to (a® + 1)(a + 1) > (a® + 1)?, which
reduces to a{a ~ 1)2 > 0, while the right side inequality is equivalent to

2(a? - a +1)? > a + 1, which reduces to (a ~ 1)4 > 0
Muitiplying now the inequalities

aAB+1  LJat+ 1
>1/
al+4+1~ 2 7
A+l A+l
> 2
241~ 2
yields

(& +1)(B*+ 1)(S+ 1)(d® +1) 1\4/(
@+ DEE 1)@ + )@ +1) =2V

Applying twice the Cauchy-Schwarz Inequality produces

(' + (" + 1)(c* + 1)(d* + 1) > (a®? + 1)(Fd? +1)? > (abed + 1)1,

We will show that

OD

l\?
IV

++

2
+

IV

1110+ 1) (e 4+ 1)(d4 + 1).

from which the desired inequality follows. Equality holds for a=b=c=d=1.
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*

12. Let a,b,c be non-negative numbers, no two of which are zero. Then,

1 1 1 9
>
az+ab+b?+b2+bc+c2 +c2+ca+a2 “(a+b+e)?

Solution. Let s = ab + bc + ca Due to homogeneity, we may consider
a+b+c=1. Since
1 B 1 1
a?+ab+b?  (a+b+c)?~(ab+bct+ca)— (a+b+4c)e T 1-s—¢’

the inequality successively becomes
1 1 1 > 9,
l1—-5—¢ 1l~s5s—a l—s—b_
953 — 65% — 35 + 1 + 9abe > 0,
s(35 — 1)® +1— 4s + 9abc > 0.

The last inequality is true because 1 — 4s + 9abe > 0 by Schur’s Inequality
(@ +b+c)® + 9abc > d(a + b+ c)(ab + be + ca)
Equality occurs if and only if a =b=¢.

*

13. Let a,b, c be positive numbers, and let

1 1 1
z=a+-—-1,y=b+--1,2=c¢c+—-—1.
b c a

Prove that
ry +yz +2x > 3.

Solution. Without loss of generality, assume that z = max{z,y,z} Then,

1 1 1 1 1
x2§($+y+z) 3(a+ +b+b+c+———3) 5(2+2+2—3)=1
On the other hand,

(z+ D(y+1)(z4+1)=abc + ! +a+b+ +1+1+1>

2 = — —+ -+ -

z+ 1y abc taTe e

1 1 1
22+a+b+6+;+5+2=5+$+y+2,
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and hence
ryz+rxy+yz+z2x >4

(c—1)?

Since y + z = l+ b+ > 0, two cases are possible a) yz < 0, b)
y>0and:> (Sz

a) Case yz <0 We have zyz < 0, and from zyz + 2y + yz + 2z > 4 it
follows that zy +-yz + 22 >4 >3

+ yz -+ 22
b) Case y,2 >0 Letd = M% We have to show that d > 1

By the AM-GM Inequality, we have xyz < d® Thus zyz +zy+ yz + 22 > 4
we get d® 4 3d> > 4, (d~1)(d+2)? > 0, d > 1 Equality occurs for
a=b=c=1

*

14. Let a, b, c be positive numbers, no two of which are zero. If n is a positive
integer, then
2¢" —b" —c* W - —a® 2" —a - B
3 >t 3 7+ 35 7 2
b —be+ ¢ et —ca+a a’* ~ab+ b

First Solution Let E be the left hand side of the inequality, and let
X=2a"-b"-c", Y =2"-("—0a", Z=2"~aqa" - b"

Since X +Y 4+ Z =0, we have

1 1 1 1
E= (b2—bc—| 2 c"’—ca+a2)X+ (a.i’——ab+b2 B cz—ca+a2)

_ 1 [(a—b)(a+b—c)X L (c—b)(c+b~a)Z]
2 —ca+ a? b2 — be | c2 a? — ab + b?

Thus, the inequality becomes

(a—=b)la+b~-c)X (c—b)(c+b~-0a)Z
b2 —be + c? + a? — ab + b? 20

Since the inequality is symmetric, it suffices to consider the following two
cases. l}a>b>¢c,btc>a 2 c>a>batb<e

In the first case, as well as in second case with X < 0, the inequality is
true since (@~ b)(a +b~¢)X >0and (¢c—b)(c+b—a)Z >0
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In the second case with X > 0, we rewrite the inequality as

(c=b)e+b—0a)Z _ (a—b)c—a—-b)X
>
a?—ab+b b2 — be + c?

This inequality is true since

Z2>2X>0,
c~b>a-b2>0,
c+b—a>c—a—5b>0,
b2 —bcH c*>a’—ab+ b >0.

Equality occurs if and only if a=b = c.
Second Solution (after a Ho Chung Siu’s idea). Let E be the left hand
side of the inequality, and let
A= —-c", B=c"—a" C=a"-b",
X=0—bc+c? Y=c*—cata?, Z=a?—ab+b
Without loss of generality, assume that a > b > ¢. We have A > 0, C > 0,
and

E:A+QC’+A—C_2A+C:A(1 1—_2_)+C(3_i_i)

X Y Z xtvy 2z X Y Z
2
To prove the desired inequality it suffices to show that 5{—4- v 7 > 0 and

2 1 1
Y_F_EZO' SinceY — X =(a—b)la+b—¢c)>0and Z2—-X =

(a—c){a—b+c) > 0, the second inequality is obviously true In order to
prove the first inequality, we write it as

1 1 1 1
>
X Z~Z Y’

(a—e)a+c—b)a®+ ¢ —ac) > (b—c)(a—b—c)(b* + c* — be).

The inequality is trivial for a~b— ¢ <0 For a — b — ¢ > 0, the inequality
follows froma—c>b—c,a+c—b>a—b—c, a® +¢? —ac > b? + ¢ —be.

*
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15. Let0<a < b and let ay,a2, ,a, € [a,b]. Prove that

ay +ap+ -+ ap —nYaiar . a, g(n—l)(\/E-\/E)z.

Solution. First we will show that the left hand side of the inequality is max-
imal when a1,as, ..,a, € {a,b}. To prove this claim, consider az,. ,an
fixed and assume, for the sake of contradiction, that

flaa)=a1+as+ -+ap—nYaa; .. an,

is maximal for ¢ < a; < b; that is f(a;) > f(a) and f(ay) > f(b). Let
z; = P/, for all i, and let ¢ = ¥a, d = ¥b (c < z; < d). From

flay) = fla) =z = " ~n(z; —c)z2. T, =
= (z; ~ ¢) (:1:’1“1 +:c;‘_2c+ ottt —‘nl‘g...l'n) >0,

we get
- ) -
P P+ 2t et o+ > nzy Lz,

Analogously, from

flar) = f(b) =2} —~d" —n(z) —d)z2 .z, =
= (x1 — d) (z?“1+m?_2d+---+d"_1—n:rg. .:rn) > 0,

we get
nry. Tp> :r:;'_1 + x’l‘"zd+ o 4 d L

Adding up the obtained inequalities yields
R L R SR N e 7 %d 4 4 4

which is clearly false.
Since the left hand side of the given inequality is maximal when

ai,as,. .,a, € {a,b},
it suffices to consider that
ay=--=ar,=a and a1 = - =a, = b,
where k € {1,2,. .,n —1}. The inequality reduces to

(n—k ~1)a+ (k- 1)b+nanb™" > (2n - 2)vab,
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which immediately follows by the AM-GM Inequality
For n > 3, equality occurs if and only if @ = 0, one of ¢; is equal to 0
and all the other a; are equal to b

Remark This inequality is an improved generalization of the following
problemn from USA TST 2000, proposed by Titus Andreescu:
If a, b, ¢ are positive numbers, then

a+b+c—3€‘/ﬁg3max{(f——@2,(\/5—\/2)2,(\/2—\/&)2}.
*

16. Let a,b,c and x,y, 2z be positive numbers such thatz +y+z=a+b+c.
Prove that
az® + by® + c2* + zyz > dabc
24z T+ + z
First Solution Let p = b— 5 4= ¢~ yandr:a—y_z

Among the numbers p, g and r always there are two of them with the same

sign let us say pg > 0 We have

_ T+ 2 _ r+y . e Ytz
b=p+ 5 ,c—q+—2—,a—:rly+~ b—c= 5

—p-4q,

and so

az?® +by® + cz° + zyz — dabe = (yl‘z_p_q)x2+(p+$;z)y2+
Tty

+ z T+ 2z r+y
+(q+ 9 )"‘2+Iy2"4(y9 _p_q)(p+ 2 )(q"' 9 ):

= dpg(p + q) + 20°(z + ) + 2¢°(2 + =) + 4pgz =

r+z z +
= 4¢° (p+ —?,L—) + 4p° (q+ —2——y) + dpgz = 4(¢%b + pPc + pax) 2 0

Equality occurs if and only if 2 =b+c—a,y=c+a—b,z=at+b—c We
y+ =z b z+zx Tty

can also write these equality conditions as & = —5—, b= ——,¢c= —

Second Solution We will consider two cases
Case x2 > dbc We have az? > 4abe, and hence az?4-by?+c2?+ays > dabe
Cascxr? < dbc letu=a-+b+c=x+y+2 Substitutingz=u-~x—y
and a = u — b — ¢, the inequality becomes

cu? + [(:z:2 — dbe) —2¢(z + y) + :):y] u—(b+ c)(x?* ~ dbec)+
+hy te(z+y) —zy(z+y) 20
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The quadratic in u has the discriminant
6 = (2% — 4bc)(2¢c — x — y)?.
Since § < 0, the inequality is clearly true
Third Solution The inequality is a direct consequence of the identity

2yzu + zzv + zyw)(az® + by® + cz® + ryz — dabe) =

= zu(v—w)? + yv(w — u)? + 2w(u — v)? + 2wvw(z + y+ z—a —b—c),
where u = 2az + yz, v = 2by + zz and w = 2cz + zy.

*

17. Let a,b,c and z,y, z be positive numbers such thatz+y+z=a+b+c.
Prove that
z(3z + a) 4 y(3y + a) 4 2(3z + a)

> 12.
be ca ab -

Solution. Write the inequality in the form
1
az? + by® + ez + §(a2x b2y + ¢%z) > dabe

Applying the Cauchy-Schwarz Inequality, we have

2 2 2 (a+b+c)®  zyz(z+y+ z)°
+ b2y 4tz > = > 3zyz.
“F yres= 1 1 1 ry+yz+z2x v
T Yy =z

Thus, it suffices to show that
az® + by? + c2® + xyz > 4abce,

which is just the preceding inequality.
One has equality forr =y =z=a=b=1c¢

*

18. Let a,b,c be positive numbers such that a? + b% + ¢? = 3. Prove that

<o

9

+ a+b+c’

boes
C a

o R
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Solution. By the Cauchy-Schwarz Inequality, we have

2
e bey (atbioy
b ¢ a T ab+bc+eca

Thus, we still have to show that
(a+ b+ c)® > 9(ab+ bc+ ca).
By squaring and homogenizing, this inequality becomes
(a+b+c)® > 27(ab + be + ca)*(a® + b + 7).

Without loss of generality, we assume that a + b + ¢ = 3  Setting
t = ab+ bc + ca reduces the inequality to

27 > (9 — 2t).
Indeed,
27T —t3(9—2t) = 263 —~ 01 + 27 = (£ — 3)*(2t + 3) > 0

Equality occurs if and only ifa=b=c=1.

*
19. Let ay,as,...,an be positive numbers such that ajas...an, = 1. Prove
that
1 4 1 U 1 N 4n >4 2
a; ap an n+a tag+---+ap -

n-yf@; +az+-- +a
Solution. Let a = " 4] ——— " By the AM-GM Inequality we

n
get a > 1, and by Maclaurin’s Inequality we have

11 Ly !
a+a_2+.“+an> a1a2---an—1:n_val+a2+"'+an
n

= Q.

n n

Thus, it suffices to prove that

4
na+1+71—2n+2.
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Since a > 1, it is enough to show that

>n+ 2.

1+ar—

na +

This inequality is equivalent to
(a—1) [n(a"+1)—2(a"_1+ --+a+ 1)] > 0.

We have

n—1
n(e™ ' +1) =20 "1+ 4a+1)= Z(a"_1 +1-a"" oY) =
i=0

n—1 . .
= Z(a’ ~D@" 1 -1)>0,
i=0

and the proof is completed. One has equality fora; =a; = --- =@, = 1.
*
20. Let ay,as,...,an be positive numbers such that ajaz...a, = 1. Prove
that
n—1 1 1 1
ait+ax+---+an—n+12 —+—=+4+-+—-n+1
ay az Qn

ayt+ax+---+a
Solution. Let a = —— =~ By the AM-GM Inequality we get

n
a > 1, and by Maclaurin’s Inequality we have

1 1 1
n-1{ ____ —_— .. -
a=a1+a2+---+an>“—\/za1a2 "a“-lz al+a2+ +an
n - n n ’
dh
—+—+4+ -4+ —<na""".
a az an

Thus, it suffices to show that

n—1

na—n+1> na"~1--n 4 1.

We write this inequality in the form

[1+(n—1)(1——£)]n—1>n—n—1
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Using Bernoulli’s Inequality yields

[1+(n—1)(1—3)]n l
= (n—1) [n—l (1-—)—( anl_l)]=
=m-)(1- 1= (14t )] =
(DY) 4 (g

from which the conclusion follows Equality occurs for ay=a2=-- =a,=1

(n—1)? (1—1)—n+:n—_1 -

a

*

21. Letr>1 and let a, b, c be non-negative numbers such that ab+bc+ca=3.
Prove that

a"(b+¢c)+ b (cta)+c(atb)>6.

Solution. Let £ = a"(b+¢)+b"(c+a)+ "(a+b) We will consider two
cases, depending on r
Case r > 2. Applying Jensen’s Inequality to the convex function

flz)=2""1,
gives us

E = (ab+ ac)a"_1 + (be + ba)br_1 + (ca + cb)cr_1 >
a’(b+c)+b*c+a)+ c*a+b) -l
2(ab + bec + ca)

_g[@0 rat Pt a) k Hat )
_Gl 6 }

> 2(ab+ bc+ ca) [

Thus, it suffices to show that
a®(b+¢) + b*(c+a)+ c*(a+ b) > 6.
Write this inequality as

ab+ bc+ ca)(a+ b+ c) > 3abc+ 6
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It is true because a + b+ ¢ > 3 and abc < 3 The former inequality follows
by the well-known inequality (a + b+ ¢)? > 3(ab+ bc + ca), while the latter
by the AM-GM Inequality

ab+ be+ca > 3Va2b2c2,
Case 1 < r < 2. According to the condition ab + bc + ca = 3, we have
a(b+c) =3—bc, b(c+a)=3—ca, cla+b) =3 — ab,
and

E=a"13—bc)+ b 13 —ca)+ " '(3-ab) =
— 3(ar—l+br—1+cr—l) _ ar——lbr——lcr—l [(ab)2—r+(bc)Q—r+(ca)2—r] .

Since 0 < 2 —r < 1, the function f(z) = z2~7 is concave for z > 0 Thus,
by Jensen’s Inequality we have

(ab)?=7 + (bc)?~" + (ca)®~" < (ab + be + ca) -

=1
3 3 ’

and hence
E 2 3(a'r—l 4+ b'r—l + cr—l) _ 3ar—lbr—lcr——1.

Consequently, it suffices to show that
a” 4 b T >t o

Because the inequality is symmetric, we may assume that a > b > c. Let
r=+Vvab Froma>b>cand ab 4 bc+ca =3, weget 1 <z <+/3. Write
now the inequality as

ar—l +bT—1 -9 2 (ar—lbr‘—l _ 1) (3 — a’b)r_l )

a+b
The AM-GM Inequality yields a + b > 2z and a”~! + b™! > 2z7-!. Thus,

it suffices to show that

2z — 1) > (222 - 1) (3 - xz)rq

2z

Since £ > 1, we have to prove that

3—x2\"!
2> (z"!
> (z +1)( o )
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Write this inequality as

322\ 32\
2>
=(57) (5

3—12 3 z?

Since 1 > > 5 the inequality is clearly true. Equality occurs if
and only ifa=b=c=1.

*

22. Let a,b, c be positive real numbers such that abc > 1. Prove that
(a)  abbecs >1;
()  afbicf>1

a b c
Solution. (a) Using the substitution z = —, y = —and z = —, where
T T T
r = vabc > 1, we have zyz = 1 and
a,bbcca :_fz;vy%z?r3+_ 5 > x:y f

Therefore, it suffices to show that

z Vv
yvyzz

Bln

x > 1,

)
or, equivalently,

lna:+ lny+ Inz>0.
y

Since the function f(z) = zlnz is convex, by Jensen’s Inequality we get

T y =z
1 1 vy oz =z
l-mln:z:Jr— ylny+—-zln22(£+2+i)ln—y—%———x,
y z T y 2z z 1 1 1
vy z 'z

and it remains to show that

1
.y, 2 N
y 2

o .

N | -

>1y
Yy

By the AM-GM Inequality we have

/ 2
Y 2 Y A Z
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and, analogously,

+2= >

+2—2>

N @
R
Hloo
SHEY
€| w

@y

Adding these inequalities yields the required inequality.
(b) Write the inequality in the form

s Ina+élnb+clnc20.
b c

As above, by Jensen’s Inequality we get

a b
b —+-+c¢
l-alna+l‘blnb+clnc2(E+—+c)lnb—c

b c b ¢ 1 1
-+ -+1

b ¢

Thus, it remains to show that
b 1 1
— > —
5 242 ctezp+o+L

1
Since a > —, it suffices to show that

b,
1 b 1 1
2 >4 2
o texsto+l
This inequality is equivalent to
1+b+c2>c+1 c
2 Z 3 +c,

or
142 i
(2c— 1 —3) +{1- —) (4b+3) > 0.
Equality in both inequalities occurs for a = b =c¢ = 1.

*

23. Let a,b,c,d be non-negative numbers. Prove that

4(a® + 5% + c® + d%) + 15(abe + bed + eda + dab) > (a+ b+ c+ d)°.
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Solution. Let
E(a,b,c,d)=4(a® + % + ¢® + d®)+15(abc + bed + cda + dab)—(a + b+ c + d)®.
Assume a < b < ¢ < d, then show that
E(a,b,e,d) > E(0,a+ b,c,d) > 0.

We have

E(a,b,c,d) ~ E(0,a + b,c,d) = 4 [a® + b° — (a + b)®] + 15ab(c + d) =

= 3ab[5(c+ d) — 4(a + b)] > 0.

Setting a + b = x, we get

E(0,a+ b,c,d)=F(0,z,c,d)=4(z® + & + &)+ 15zed—(z + ¢ + d)°.

It is easy to check that the inequality £(0,z, ¢, d) > 0 is equivalent to Schur’s
Inequality

23+ +d3+ 3zed > ze(z + ¢) + cd(c+ d) + dz(d + z)
Under the assumption a < b < ¢ < d, equality occurs for
(a,b,¢,d) ~ (0,1,1,1) and (a,b,c,d) ~ (0,0,1,1).
*

24. Let a, b, c be positive numbers such that
1 1 1
b— (— - — —) = 4.
(a+ ) a + b ¢

Prove that i { y
4 4 4

a
Solution. Without loss of generality, assume that a > b. Let = U u >1

Since

wriabri-Yern(bedfornls(li s

< (a+b) (%+%)—2\/(a+b)(é+%)+1= [\/((Hb) (%Jr%)_l]z:
2
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2
/ 1 1
it follows that ( vt —+2-— 1) >4, and hence u + - > 7. On the other
u

hand,

u

.. . a 3+V5 b 3-+5
conditions are equivalent to — = 5 —and - = ——.
c ¢

a b
Equality occurs when ab = ¢® and ;t-= 7. For a > b, the equality

*

25, Let a,b, c be positive numbers. Prove that

1 1 1 2
a2+2bc+ b2+2ca+c2+2ab> ab+ be+ ca

First solution. Without loss of generality, assume that a > b > ¢. We have

abtbctca . (b—a)(b—c) ab—i—bc—i—ca_l_(c—a)(c-b)
b2+ 2ca b +2ca ' c24+2ab 2+ 2ab
and hence
ab+ bc + ca ab+bc+ca_2+(b_c)22a2—3a(b+c)+bc
b2 + 2ca c2+2ab (62 + 2ca)(c? + 2ab)

Thus, the inequality becomes

ab+bc+ca>(b )23a(b+c)—bc—2a
a? + 2bc (b2 + 2ac)(c? + 2ab) °

This inequality is clearly true if 2a? + bc > 3a(b + ¢).
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Since ab + bc+ ca — 3a(b + ¢) + be+ 2a? = 2(a — b)(a—c) > 0, it suffices
to show that

(b2 + 2ac)(c® + 2ab) > (b — c)*(a® + 2be).
similarly, since ab + bc 4+ ca — 3c(a + b) + ab + 2¢2 = 2(c — a)(c — b) > 0, it
suffices to show that

(a2 + 2bc) (b2 + 2ac) > (a — b)*(c® + 2ab).
By multiplying these two sufficient inequalities, we get

(% + 2ac)? > (b—¢)*(a - b)?,
which is equivalent to
2b% + 3ac > bla + ¢).

If the last inequality is true, then the given inequality holds. On the other
hand, as shown above, the given inequality holds if 2a% 4+ be > 3a(b + ¢).
Thus, it suffices to show that

(262 + 3ac) + (2a% 4+ be) > b(a + ¢) + 3a(b + c).

This inequality reduces to 2(a — b)2 > 0, which clearly is true.

Second solution (by Darij Grinberg). We will show that the following
sharper inequality holds

1 1 1 2 1
>
a2+2bc+b2+2ca+c2+2ab—ab+bc+ca+a2+b2+c2’

with equality for a = b, or b = ¢, or ¢ = a. Taking account of
1 4 1 N 1 _
a?+2bc ' b2 +2ca 2+ 2ab
_ (ab+ bc+ ca)(2a® + 2b? + 2¢? + ab + be + ca)
B (a? 4 2bc)(b? + 2¢ca)(c? + 2ab) ’

we can show that the inequality is equivalent to

(a—b)%(b—c)*(c— a)’(2a% + 2b% + 2¢* + ab+ bc + ca) 2 0
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26. Let a,b,c be non-negative numbers, no two of which are zero Prove that

a(b+c¢c) b(c+a) c(a+b)> ab+bc+ ca
a?+2bc b2 +4+2a 2+ 2ab " a? + b2 + ¢2

Solution. The inequality follows by adding the above inequality

ab+bc+ca ab+bctca ab+ be+ca ab+be+ca
2 + 3 +— 22+ =0 2
a? 4 2be b + 2ca ¢t + 2ab at+ b4 ¢

to the inequality

> be N ca N ab
—a?4+2bc b?4+2ca 4+ 2ab

The last inequality is equivalent to
a? 4 b2 + c? >
a2 +2bc b2 4 2ca 4 2ab T
According to the Cauchy-Schwarz Inequality, we have

a? (Xa)’
z a? + 2bc z Z:(a2 + 2bc) =1

1

Equality occurs if and only if e = b = ¢.
*
27, Let a,b, ¢ be non-negative numbers, no two of which are zero. Then

bref (eral (avbf
at4+bc b24ca  c2tab T

First Solution. By the Cauchy-Schwarz Inequality we have

BRI Ee+o’

a+be = 3 (a® + be)(b + c)?

Thus, it suffices to show that

2(S"a®+ 3 0be)" > 35 (0% + be) (b + ¢ + 2be)

Since

(Fa*+ 300" = (T o)’ + (Lbe)" +2(L a?) (L) =
= Za" + I&Z:bzc2 + 4acha+ 22bc(b2+ c2)
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and

E(a2 + be)(b? + % + 2bc) = 421}262 + 2abcz a+ Zbc(b2 + c?),

the inequality becomes

23 a' +2abed a+ D be(b? + %) 26 b

We can obtain this inequality by summing the inequalities

S bed® +c?) 22 b2
and
Za" + acha > Zbc(b2 +¢%)

multiplied by 3 and 2, respectively. The first inequality is equivalent to

Z be(b —c)? > 0,

while the second Inequality is just the fourth degree Schur’s Inequality.
Equality occurs for (a,b,¢) ~ (1,1,1), and also for (e,b,c) ~ (0,1,1) or
any cyclic permutation

Second Solution (by Pham Kim Hung) Since

3 b+eo? _Zb2+c2—2a2 B
a? + be - a2+ be
b? — a? c? —a? b? — o? a
B a2+bc+2a2+bc_Za2+bc+2b2+ca_
 —(a®—b)(a—=b)(a+b—c)
B (a? + bc)(b? + ca) ’

we may write the inequality in the form
E=Y(b—c)*(a®+b)(b+c)(b+c—a)20
Due to symmetry, we may assume that a > b > c. Since
(a—b)%(c? +ab)(a+b)(a+b—2c) 20,
it suffices to show that

b—c ? a’+4be)(b+c)(b+c—a)+ (c—a)*(b%+ca)(cte)(c +a—b) 2 0.
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Write the inequality as
(a—c)}(b*+ac)(ate)(a+ c—b) > (b—c)(a®+be)(b+c)(a—b—c)

Since a+c¢>b+c¢,a+c—b>0anda | c—b>a—b—uc, it suffices to show
that
(a—c)(b? + ac) > (b—¢)%(a® + be).

We can obtain this inequality by multiplying the obvious inequalities
a®(b® + ac) > b%(a® + be), b*(a—c)® > a®(b—c)%
*

28. Let a,b,c be non-negative numbers, no two of which are zero. Then

b+c + c+a N a+b > 6
202 +bc  202+ca  2c2+ab T a+b+c

Solution (by Bin Zhao) Write the inequality as E > 0, where

(b+c)e+b+e) b +c*—4a® +ab+ac
b= Z[ 202 + be _QJ_Z a? + be
:z(b+2a)(b—a)+(c+2a)(c—a)_

2a? + be B
—Z (b + 2a) (b—a)_z(a+26)(a—b)=
2a? + be 2b% + ca

TR e 00 e ab)e 8 S —beca)

Due to symmetry, we may assume that a > b > ¢. Since
a’ + b +3ab—bc—ca=ala—c)+b{b—c)+3ab>0
it suffices to show that

(b— ¢)*(2a% + be)(B® + ¢? + 3be — ca — ab)+
+ (¢ — a)?(2b? + ca)(e® + a® -+ 3ca — ab — be) >0

Write this inequality as

(a—c)?(2b% + ac)(a® + ¢* + 3ac — ab — be) >
> (b—c)*(2a? + be)(ab + ac — b% — ¢ — 3be).



114 8 Final problem set

Since
a® +c?+3ac—ab—bc=(a+c)(a—b)+c(c+2a) >0
and
(a®+c?+3ac—ab—bec)—(ab4 ac—b%—c? —3bc) = (a—b)2 +2c(a+b+c) >0
it suffices to show that
(a—€)2(2b% + ac) > (b— c)}(2a® + be).
This inequality follows by multiplying the inequalities
a?(2b? + ac) > b*(2a% + be), b (a—c)® > a®(b—c)?.

Equality occurs for (a,b,c) ~ (1,1,1), and also for (e, b,¢) ~ (0,1,1) or any
cyclic permutation

*

29. If a,b,c are non-negative numbers, then

ay/a? 4 3bc + by/b? + 3ca + cy/c? + 3ab > 2(ab + be + ca).

First Solution. Without loss of generality, assume that ¢ > b > c¢. For
¢ = 0, the inequality reduces to (a — ) > 0 Consider now a > b > ¢ > 0,
and rewrite the inequality as follows

Za(\/a?-}—i’.bc—b—c >0,
Za«',ﬁ-{vbc—b?—c2
Va? +3bc+b+c
X Y VA
+ +
(b+c)A  (c+a)B  (a+b)C

> 0,

20,

where

A=ya2+3bct+btec, B=yt2+3catcta C=\/c2+3ab+a+b,
X =a3(b+c)—a(B®+%), Y=03(c + a)=b(c*+a%), Z=c*(a + b)— c(a®+b?).
We sece that X + Y + Z = 0. We have

X=ab+c)[a® b +c(b—c)] >0,
Z=cla+b)[c*—a?+b(a—b)] <0
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and
X Y Z X X+2Z Z

6794 T eraB T (@10)C ~ 1A  (e+a)B T (arb)C
1 1

1 1
=X - - - >
{(bJrc)A (c+a)B]+( Z)[(c-i-a)B @+5)C] =
X (1 1 (-Z),1 1
> - — - -
_c+a(A B)+a+b(B z)
To finish the proof, it is enough to show that A < B < C. The inequality
A < B is equivalent to each of the following inequalities

vVa?+ 3bc—a < /b2 + 3ca—b,
3be

3ea

< .
\/aE +3bc+a \/bi +3ca+ b
b? + /b4 + 3ab%c < a® + \at + 3a%be

Since b < a, the last inequality is clearly true Similarly, the inequality
B < C is equivalent to

¢+ /el + 3abe? < b? + /b4 + 3ab2e,

which is also true
For a > b > ¢, equality occurs when either (a,b,¢) ~ (1,1,1) or
(a,b,e) ~(1,1,0)

Second Solution (by Ho Chung Siu) Assume that ¢ > b > ¢ > 0, and
rewrite the inequality in the form

2 b b? 2 2 g o2 2 24 b 22
a(a*+be—b c)+b(b +ca— ¢ a)+c(c +ab—a b)>0
A B C -7

where

A=+a2+3bc+b+c, B=b?*+3cat+c+a, C=+c2+3ab+a+b

As shown above, we have A < B < C We will prove that
a(a® 4 bc — b% — ¢?) a(a — b)(a—c)

poerie o yelentiend s,

The left side inequality is equivalent to

Z a(ab+ac—62 - c2)

> 0.
2 >0
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It is true because

a(ab + ac—b?—c?) ab(a—b) ca(c—a)
Z A - Z A > A

_Zaba b) Eab(a. b) Z ab(a—b) (Z_’E) 0.

In order to prove the right side inequality, we write it as

Aj(a=b)(a—c) + Bi(b—c)(b—a) + Ci{c—a)(c—b) > 0,
or
Bi(a—b)%+ (A, — By)(a—b)(a—c) + Ci{c—a)(c—b) >0,

b c
whereAlz%,Blz—g,CJ',:—. Sincea>b>cand A< B<C(C, we

have A, > B, > C| > 0, from which the inequality follows.

*
30. Let a,b,c be non-negative numbers, no two of which are zero. Then
a? — be b2—ca c? — ab

+ > 0.
Vva? + be \/b2+ca Vel + ab

First Solution. We write the inequality in the form

£ Z_}_E)O
AtBtc2

where
X=(a®=bc)(b+c), Y =(b*—ca)c+a), Z= (c® — ab)(a +b),
A= (b+c)ya+be, B=(c+a)\/b?+ca, C=(a+b)yc?+ab

Without loss of generality, consider that a > b > c¢. It is easy to check that
X +Y +Z =0 Moreover, we claim that X > Y > Z and A < B < c
Indeed,

X —Y = abla—b) + 2(a® — b%)c + (a — b)c* 2 0,

Y —Z=be(b—c)+20b%—cta+ (b—cla®>0

and

B2 — A% = (a—b)c® + (a? — b)c® + c(a — b)(a® — ab+ b°) > 0,
C?—B?= b—c)a® + (b? — c?)a® + a(b—c)(b* —bc+ %) 2 0.
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Then, by Chebyshev’s Inequality we get

X Y Z 1 1 1
3(A+B+C)_(X+Y+Z)(A+B+C)
Equality occurs if and only ifa = b= ¢

Second Solution Write the inequality as

a’ —be
>—7 20,
where A = va? + be, B= Vb2 + ca and C = \/cZ + ab We have
a® —be (a—b)a+c)+ (ea—c)(a+b)
2L T

A
a—b)(atc —a c atec b
-y lemtllate) | o Bmallbre) _smg ) (Ee-2e) -
a—b (a+c)*B? — (b+c)2A? c(a—b)? C)

_ )74
=2 AB  (e+c)B+ (btc)A =2 AB  (e+c¢)B+ (b+c)A’

where C} = a® +b%+¢% — ab+ bc+ ca. Since C; > 0, the inequality is clearly
frue.

3
Remark. Similarly, we can prove that for 0 < p < 3 the inequality holds

a? —bc b? —ca c? — ab
+ + > 0.
\/pa2 + be \/pb2 +ca \/jnc2 + ab

By the second method, we get

C\ :a.2+ab+b2+2(a+b)c+c2—p(2ab+bc+ca) >
3
2a2+ab+b2+2(a+b)c+c2—5(2ab+bc+ca)=

_ 2(a—b)+cla+b+2)

> 0.
5 >0

*

31. If a,b,c are non-negative numbers, then

(a® — be)y/a? + 4be + (b? — ca)y/b? + dea + (c? — ab)y/c2 + dab > 0.
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Solution. It two of a,b, c are zero, then one has equality. Otherwise, we
write the inequality in the form

AX+BY +CZ >0,
where

X =(a®—be)(b+c), Y = (b? — ca)(c+a), Z = (c®— ab)(a +b),

4 va? + 4be B Vb2 + 4ca C— Vet + 4ab
" b4e  c+a '  a+4b

Consider now, without loss of generality, that a > b > ¢. We have X +Y +
Z=0,X >0and Z <0. Moreover,

X —Y =abla—b)+2(a®—b*)c+ (a—b)c? >0

and
4_p8 3_;3 2_p2y.2
9 po_ @ —b+2(a®—b%)c+ (a®—b")c" + 4abc(a—b)— 4(a—b)c®
S B+ ole v >
4abe(a — b) — 4(a — b)c® _ de(a —b)(ab— c?)
T (btoP(cta) (bt o)(cta)?
Since

AX+BY +CZ=(A-B)(X-Y)-(A+B-2C)Z,

it suffices to show that
A+ B-2C>0.

Taking account of A + B > 2V AB, it is enough to prove that AB > C2.
Using the Cauchy-Schwarz Inequality, we get

AB > ab + 4cvab
Zbralcta)

Since 4cvab > 2cvab + 2¢?, we will still have to show that
(a+b)? (QC\/CE 4 2c2) > (b + c){c+ a)(c? + 4ab).
This inequality is equivalent to

ab(a—b)2+2cx/cE(a+b) (\/E—\/E)z-i-cg [2(a+ b)2—50,b—c(a+b)—c2] > 0,
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which is true because
2(a+b)*—5ab—c(a+b)—c® =a(a—b) + ala—c)+b(b—c) +b*—c* > 0
For a > b > ¢, equality occurs when either

(a,b,c) ~ (1,1,1) or (a,b,c)~(1,1,0).

*
32. If a,b, c are positive numbers, then
a? — be b? — ca c? — ab

\/8a2+(b+c \/8b2+ (c+ a)? +\/8c2+ (a+5)2

Solution. Write the inequality as

2 _
Za AbCZO,

where A = /Ba? + (b +¢)2, B = V/8b2 + (c+a)? and C = /8¢ + (a+ b)2.
We have

25> a22bc =Z(a—b)(a+c);(a—c)(a+ b) _

B (e —b)(a+c) (b—a)(b+c)
_Z— E___B_

_ Z —b (a+)?B*—(b+c)?A?
AB (e+c)B+ (b+c)A
Gl Ci
AB  (a+c)B+(b+c)A’

where
Ci=[(a+c) + (b+c)] [(a+¢)® + (b+c)?] — Bac(b+c) — 8be(a+c).

Let us denote = a + ¢ and y = b+ c. Since dac < z? and 4be < 32, we
obtain

Ci=(z+y)=*+1*) - 22% 2% = (z + y)(z —y)? > 0
Equality occurs if and only if a = b = ¢.

*
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33. If a,b,c are non-negative numbers, then

\/a2+bC+\/b2+ca+\/c2+ab§-g-(a+b+c).

First Solution (by Tsoi Yun Pui). Assume that @ > b > c. Since

\/a2+bc§a+§

and

\/b2 + ca + \/c2 +ab< \/:Z(b2 + ca) + 2(c? + ab),

it suffices to show that

a+ 3b+2¢c

V2(b2 + ¢+ ab 4 ca) < 5

By squaring, the inequality becomes
a? + b° — 4¢? — 2ab + 12bc — 4ca > 0,

or
(a—b—2c)® +8c(b—c) >0,

which is clearly true.
For a > b > c, equality occurs if and only if (a,b,¢) ~ (1,1,0)

Second Solution. For a = b = ¢ = 0, the inequality is trivial. Consider
now a > b > ¢, a > 0. Since

\/b2+ca+ \/c2+abS \/2(b2+c2)+2a(b+c),

it suffices to show that

Va2 +be+/2(0% + c) + 2a(b+¢) < g(a+ b+c).

b+c
2

Denoting s = (s < a) and p = be, the inequality becomes

2\/a2+p+4\/2:2—p+a353(a+25),
41/2s2 — p+ as < 3(a+ 2s) — 2y/a? + p.

By squaring, the last inequality transforms into

12 a + 25)\/e? + p < 13a® + 20as + 4s% + 20p
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or

12(a + 2s) (\/a2 +p— a) < (a— 2s)% + 20p.

Since (a — 2s)? > 0 and

_ P P
AR Ay - T

6(a + 2s)p < 20p

it suffices to show that

This inequality is equivalent to p(6s — 7a} < 0, which is clearly true
*

34. Let a,b,c be non-negative numbers such that a? + b2 + ¢ =3. Then,
21 + 18abc > 13(ab + bc + ca).
Solution. We will use Schur’s Inequality of fourth degree
a® + b* + ¢* + 2abe(a + b+ ¢) > (a® + b2 + ¢2)(ab + be + ca).

Let s=a+b+c From (a+b+c)? > a? +b? + ¢, we get s > /3 Taking
account of
a4+b4+c4=(a2+b2+62)2_2(a262+b2c2+62a2):
=9 —2(ab+ be+ ca)® + dabes

and 2 _q
ab+ bec+ca = i 2— ,
from Schur’s Inequality above, we obtain
be > s4— 35218
ave= 125 '

Returning to the our inequality, we have

3(s4 — 352 — 2 _
21 + 18abc — 13(ab + be + ca) > 21 + (s —3s2—18) 13(s*-3) _

2s 2
35 —135% — 952+ 81s — 54 (5 —3)%(3s52 4+ 55 — 6)
= = > 0.
2s 2s -

Equality occurs if and only ifa =b=c¢ = 1.
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*

35. Let a,b, ¢ be non-negative numbers such that a® + b% + ¢ = 3. Then

1 1 1
< 1.
5—2ab+5—2bc+5—2011_]L

First Solution. Let s = a + b+ ¢. Then,

2_3

ab+bc+ca:s 5

and from
a2+ 02+ < (a+b+ ) <3(a® + b2 + ),

we get v/3 < s < 3. By expanding, our inequality becomes
4a®b%c® — 8abe(a + b + ¢) + 15(ab+ be + ca) — 25 < 0,

or
8(s — abc)® + 752 — 95 < 0.

As shown in the preceding proof, fourth degree Schur’s Inequality implies

st —3s% — 18

be >
ave = 125

3
s
Then, since s — abe > s — 7 > 0 and

s —33%2—-18 3 18 + 1552 — s*

- < g —
O<s—abc<s TR T ,

it suffices to show that

(18 + 1552 — 54)?
1852

+752-95<0.

1
Substituting s% = 9z, 3 < z < 1, the inequality becomes successively

(2 + 152 — 927%)% 4 22(63z — 95) < 0,
81z* — 270z° + 31522 — 130z + 4 < 0,
(z — 1)(812% — 18922 + 1262 — 4) < 0.
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Since

81z — 1892% 4 126z — 4 = 9(92° — 2122 + 142 - 2) + 14 =
= 9(1 —z)(—92% + 122 — 2) + 14,

it suffices to show that —9z2 + 12z — 2 > 0 Indeed, we have
922 + 122 -2=1+33z- 1)(1 —z) > 0.

equality occurs f and only ifa=b=c=1

Second Solution. In the proof of the problem 62 from the first chapter we
have shown that the following inequality holds for p > 6

1 1 1 3
p — a2h? +p—b2c2 +p—c2a2 “p-1

o

Choosing p == T the inequality becomes as follows

1 1 1 1
< =
(5— 2ab)(5 + 2ab) | (5 2b¢)(5 + 2b¢) | (5= 2¢a)(5 + 2ea) ~ 7
or
1 1 10
- <=
Z5—2(JJJ+Z:5+2ab -7
If we show that
E<Z 1
7 5+ 2ab’

the proof is finished Indeed, this inequality follows by the Cauchy-Schwarz
Inequality

1 9
Z 5+ 2ab = 2(5 + 2ab) 15 + 2(abg+ be + ca)
and the well-known inequality
ab+bc+ca<a + b2 4% =3,
*
36. Let a,b, ¢ be non-negative numbers such that a® + b2 + ¢ = 3. Then,

(2 — ab)(2 - be)(2 — ca) > 1.
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First Solution We will use Schur’s Inequality of third degree
(a+ b+ c)® + 9abe > 4(a + b + c)(ab + be + ca).
Let s=a+b+c¢ s<3 From
2(ab + be+ ca) = % — (a® + b2+ ?) =52 =3
and Schur’s Inequality, we obtain
Oabe > s% — 6s.
We have

(2~ ab)(2—be)(2—ca)—1 = 7—4(ab+bc+ca) + 2abe(a+b+c) — a?b?c? =
=7 —2(s® — 3) + 2abes — a®b?c? = 13 — 5% — (5 — abe)®.

Since

s3 — 6s . 155 — s3
o 9

0<s—abe<s—
1t suffices to show that

21 212
s¢(15 — s*) > 0.

13— % -
38 81 -

Substituting s = 3/, z < 1, the inequality becomes
13 — 34z + 30z° — 9z* > 0.
It is true because

13 — 34z + 3022 — 922 = (1 — 2)(13 - 21z + 92%) =
=(1—z)[1 +3(1 —z)(4 - 3z)].

Equality occurs if and only if a =b=c=1.

Second Solution (by Marian Tetiva) We will use the "mixing variables”
method. Assume, without loss of generality, that a < 1 and then show that

(2 —be)(2— ca)(2—ab) > (2 —28)(2 - az)?* > 1

‘ _\/l:>2+cz__\/3—a2
or r = g = 7
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The left inequality follows by multiplying the inequalities
2—be>2 -zt

and
(2 — ca)(2 — ab) > (2 — azx)?.

After some manipulations, the last inequality becomes

da(b - c)?
b+ec+ 22

> a?(b - ¢)?.
So, it is enough to show that
42> a(b+c) + 2ax.

We have

4~alb+c) -2z > 4(1 - az) =2 (2—ay/6 — 2?) 2 0,

2(1 — a%)(2 — a?)
2— ay/6 — 242 = > 0.
Y i ave-2@ -

The right inequality (2 — 2%)(2 — ax)? > 1 is equivalent to

because

(1+a*)(2—az)?® > 2

Since 2(1 + a?) > (1 + a)?, it suffices to show that
(1+a)?(2-ax)?>4

or
(1+a)(2—azx)>2

We have

(14+a)(2—-az)-2=qa(2—z—az) =

a(a* + 2a®—24%—6a 4 5)

2(2+ x + az)
_ala—1)%a® +4a +5)
- 2(2+ z + ax)

*

> 0.
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37. Let a,b, ¢ be non-negative numbers such that a + b+ ¢ = 2. Prove that

be ca ab

< 1.
a2+1+b2+1+c2+1_1

Solution. Write the inequality as

S be(d? +1)(* +1) < (¥ + 1)(B* + 1)(P + 1),

or
SB35 be(8? + P+ > be < a®bPP 4+ b+ et 41
Let z = ab + be+ ca and p= abe From (a4 b+ ¢)? > 3(ab+ bc+ ca) we get

4 8
xsg,and from a + b + ¢ > 3vabe we get p < 5 We have
Za2:4—2m Zb2c2:x2—4p,

Zbc(b+c) (3" a) (3 be) — Babe = 2z — 3p,
a) (3" a%) =D be(b+¢) = 8— 6z + 3p,

a?)® — 23" B2 = 16 — 163 + 22% + 8p,

c) (Z ) —acha = 4z — 22° — 2p,
be) (3" b%c*) —abe Y be(b + ¢) = z* — 6pz + 3p

Thus, the inequality is equivalent to
E=(1-z)(5-2z+z%) + (62 —2)p—2p° >0

First Solution. To kill the terms in p and p?, we will use the non-negative
expression

A=(a-b%b—c)(c—a)® and B=) d*(a—b)(a-c¢)
From

A=S"02P(bR + cF)-23 63 +2abe )y be(b + ¢)—2abey a3 —6a%bic? =
= 4z%(1 — z) + 4(9z — 8)p — 27p°

and

B=Y a'+abed a—> be(d® + ) =4(1—z)(4—2)4 12p,
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we get
6A+2(1+92)B = 2(1 — )(20 + 1752 — 332%) + 81 (62 — 2)p — 2p?]
and hence
81E =64 + g (14 92)B + (1 — 2)?(365 — 147z) > 0
Equality holds fora =0 andb=c=1,b=0andc=a=landa=b=1
Second Solution. We will consider three cases.

Case z < 2 Since
(6z — 2)p— 2p* = 62 — 4 + 2(1 — p)(2 — 3z + p) > 6 — 4,
we have
E>(1-2z)(5-2x4+2%) +6z—4=(1—2z)(1+2%) +22%>0.
Case %5_ z < 1. Since
(62 — 2)p — 2p* = 2p(3z — 1 — p) > 2p(3z — 2) > 0,

we have
E>(1-2z)(5-2z+2%)>0.

4
Case l <z < 3 As shown at the first solution, Schur’s Inequality

Zaz(a— b)Y a—¢c) >0

implies

by @=DE=32)

3
Since { {
(6z — 2)p — 2p° = 182~ 1)2 - sz —1- 2p)?
and 3z — 1 —2p > 2(1 — p) > 0, it suffices to prove the inequality E > 0 for
(z—1)(4—2x) )

p= 3 . In this case we get

(z — 1)%(37 — 11z — 22?)

E= ,
9

and clearly E > 0, since z <

ol
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*

38. Let a,b, c be non-negative numbers, no two of which are zero. Then,

a® + 3abe B3 + 3abe 4 & + 3abe
G+ " (cta) | (atb)y

First Solution. Since

Z>a+b+ec

a® +3abe  a(a?+be—b ) dPb+c)—ad®+ )

G+ef “7 (b + )2 N b+ !

we can write the inequality in the form

X Y + A
b+cP  (ctap  (a+b)

5 20,
where
X=ad%b+c)—a(B®+8), Y=t3(c+a)- b(P+a%), Z=c3(a+ b)— c(ad+b2).

We see that X+Y +272 = 0. Without loss of generality, assume thata > b > c.
We have

X = ab(a® — b?) + ac{a® — ¢*) > 0,
Z = ac{c® — a?) + be(c? —b%) <0,

and

X Y Z X  X+Z z

bt T erar T arop "ot (craP T(atb®
1 1 1 1

=X (b+c)3‘(c+a)3]+“Z’[(c+a)3"(a+b)3 =9

For a > b > ¢, equality occurs when either (a,b,¢) ~ (1,1,1) or (a,b,¢) ~
(1,1,0).

Second Solution (by Ho Chung Siu). As above, write the inequality in the
form

a(a2 +bc—b2—-C2) >0
Z (b+c)2 -

Since

a(a? + be — b2 — %) = a{a — b)(a — ¢) + abla — b) — ca(c— a)
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and a{a —b)(a — ¢)

2 (b+ c)? 20,

it suffices to show that
ab(a — b) ca(c— a)
>0
2 (b+ c)? -2 (b+e)? —

Taking into account that

ca{c—a) <« abla—1b)
2 v L Terar

the last inequality becomes

1 1
b(a—b - >0,
2 ke =) |Gy (c+a)2] =
or
abla + b + 2¢)(a — b)?
> > 0.
&+ of(c + a)?
*
39. Let a,b,c be positive numbers such that a® + b* + ¢ = 3. Then,
2 62 2
a) %+—+i>3
a? b2 c?

b)

3
> -,
btctcia at52>2

Solution (by Pam Kim Hung). a) By Holder's Inequality, we have

02 a2 2.2 213
(25)(Z%) (@) = (xa)
Therefore, it suffices to show that

(3a?)’ > 05

Write the inequality in the homogeneous form

() 2 3(S ) FE
z® > 3y /3(z? — 2y),

or
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where = = E a® and y = Z a®b? By squaring, the inequality becomes
28 — 272%y% + 54y% > 0.
It is true because
28 — 272%y? + 54y = (2% — 3y)%(z? + 6y) > 0.

Equality holds if and only if (e,b,¢) = (1,1,1).

b) By Holder’s Inequality, we have

a? 3
(T5) (D7) D+ 7] 2 (£)
Therefore, it suffices to show that
9
(Ya?) 2 73 a%b+ o
Using the above inequality (Z a2)3 >9 Z a?b?, we still have to prove that

Za%z > iz a®(b + ¢)®

This inequality is equivalent to

Y aPb—¢)? =0

which is clearly true. Equality occurs if and only if (a,b,¢) = (1,1, 1)

*

40. If a,b, ¢ are positive numbers, then

a3—b3+b3—c3+63—a3 < (a—b)2+(b—c)2+(c—a)2'
a+b b+c c+a 8

Solution (by Darij Grinberg). Since

S (° - (a+b)(eta) = Y (8- cP)at + E )(ab + be + ca) =
= a?b® £ b23 4+ 2l — a3b2 —t3c? — 3l =

= (a —b)(b~ ¢)(c—a)(a + b+ be+ ca),
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the inequality is equivalent to

(a — b}(b— c){c — a)(ab + bc + ca) < (a—b)2 + (b—c)2+ {c— a)?
(a+b)(b+ c)(c+a) = 8 '

Assume that ¢ = min{a, b, ¢}. For a < ¢ < b, the inequality is trivial, because
its left hand side is either negative or zero. Consider now that a < b < ¢,
and denote b=a+zx and c=a+y (0 < z < y). Since

(a+b)(b+c)(c+a}> (b+c)(ab+ be+ ca) > (b+ ¢~ 2a)(ab + be 4 ca),

it suffices to show that

(b —G)(C—b)(c—a) (=62 +(b—c)* + (c—a)?
b+c—2a 8

that is s g
ryly—z) 2+ (y—2)P+y
z+y = 8

This inequality is equivalent to

3:3 + y(Qx - y)2 2> 0:
which is clearly true. Equality occurs if and only if (a,b,¢) ~ (1,1,1)
*

41. Let a,b,c be non-negative numbers, no two of which are zero. Prove that

a? 4 b2 T c? < 1
(2a+b6)(2a+c¢)  (2b+¢)(2+a)  (2e+a)(2c+b) — 3"

Solution. The inequality is equivalent to each of the inequalities
a a?
3 - >0
at+b+c) (2a+d)(2a+c)| ™

v ala —b}(a—¢)
(2a+b)(2a+¢) =
Due to symmetry, we may consider that a>b>c. Since

c(c—a)(c—b)
@cra)2ctb) =2
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it suffices to show that

a(a —b)(a - ¢) b(b— c)(b— a) S
(2a +b)(2a+¢)  (2b+c)(2b+a) —

Writing this inequality in the form
(a— b)2 [(a + b)(2ab - c2) + c(a,2 +b¥ 4 Sab)] >0,

we sce that it is true. For a > b > ¢, equality occurs when either
(a,b,¢) ~(1,1,1) or (a,b,c) ~ (1,1,0)

*

42, Let a,b,c be non-negative numbers, no two of which are zero. Prove that

1 1 1 1
> .
5(az+b2)—ab+5(b2+c2)—bc+5(c2+a2)—ca = a? + 62 4 ¢?

Solution. The hint is to apply Cauchy-Schwarz Inequality after making the
numerators of the homogeneous fractions to be non-negative and as small as
possible To do this, we see that

a? +b% + 2 5a2 + be

1
- = 0
5(b2 4+ c?)—be 5  25(b% + c?) — 5be >

Thus, we may write the inequality as

Z 5a% + be
5(b% + ¢?) — be

> 2.

According to Cauchy-Schwarz Inequality, we have

5a2 + bc S (52 a® + Z bc)2

Z 5(b% + ¢2) — be z:(Sb2 + 5¢% - be)(5a% + be) ’

and it remains to show that

(53 0%+ S be)” > 23 (562 + 5¢% — be) (50° + be)

This inequality reduces to

252:0,4 + 22acha > 472 b2 c?
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We can get it by summing the inequalities

Za4 +acha > 22!)%2
and
Z at > Z b2e?,
multiplied by 22 and 3, respectively. The former inequality follows by
summing up the well-known fourth degree Schur’s Inequality

doat+abe) a> Y be(b® + )
to
D be(b? + %) 223 b2R

The last inequality is equivalent to
> be(b—c)? > 0.
Equality occurs fora=b=c¢
*

43. Let a,b,c be non-negative real numbers such that a®+ b2 +c¢? = 1. Prove

that
be ca ab

a2+1+b2+1+c2+1

<3
— 4
Solution. Since

1 b _a2+1—2bc_2a2+(b—c)2>0
2 a2+1 2a2+1) 2241 =7

write the inequality as

a®>+1—-2c _ 3
IS
a? +1 2
and apply the Cauchy-Schwarz Inequality-

a? 41— 2be [3>(a? - 2bc +1))

Z a2+1 2 =

S (a® + 1)(a? + 1 — 2be)

4(2- Y be)®

S (®+1)(a? +1 - 2bc)
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Thus, it suffices to show that

8(2- S be)” >33 (a? + 1)(a® + 1 — 2bc).

This inequality is equivalent to

17+ 85 b2c* +22abcy a>3> a' + 26 be.

Taking account of Z t=1-2 Z b2c?, the inequality becomes successively
as follows

T+ 7% b2 + 1labed a2 13 be,

7+7(3 be)* 2 133 be+ 3abe S a,

(1= S be) (7= 63 be) + (S be)” — 3abe Y a 20,
(1= "bc)(7-6 be) +%Za2(b—c)2 > 0.

Since Z be < Z a® = 1, the last inequality is clearly true. Equality occurs

1
fora—b=c=—.
¢ 73

*

44. Let a,b,c be non-negative numbers such that a? + b2 +¢2 =1 Prove
that

1 1 1 9
< —.
3+a2—2bc+3+b2—2ca+3+c2—20,b_8
Solution. Since
2_9 0.2 _ 2
1 1 1+ a° — 2bc _ 2a +(b—c) >0,

2 3ta2—2bc 2(3+a’—2bc) 2(3+ a’— 2bc)

write the inequality as

14+a%2—2bc _ 3
et ]
3+a2—2bc " 4
By the Cauchy-Schwarz Inequality we have
2
1+a2—2bc [>°(1 + a® — 2bc)]

Z:3+¢:1,2—2bc_ Z(3+a2—2bc)(1+a2—26c) B

) 4(2- S be)"
a 8—4Zbc+2(1+a2—2b0)2'
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Thus, it suffices to show that
16(2— 3 bc)* 2 24 - 123 be + 3 3(1 + a? — 2b0)2.
This inequality is equivalent to
25+4) b%c? +4dabc > a 233 ot +40) be

Since Z at=1- 22 b2¢?, the inequality becomes

1145% b*c? +22abcy a> 203 be.
Setting z = ab + be + ca, we may write the inequality as

11 — 20z 4 52° 4 12abc Y " a >0
The Schur’s Inequality of fourth degree
Z at + 2abcy a > (Z a2) (z bc)

is equivalent to
6abc2a >0+ —1.

Therefore,

11— 20z + 52° + 12abc Y a > 11— 20z + 522 + 2(222 + z— 1) =
=9(z—-1)2>0.

Equality occurs fora=b=c =

5~

*
45. If a,b, ¢ are positive numbers, then

da? - b2 —¢? 42— 2 —a? 42 — g2 — B2
+ + <3.
a(b+ c) b(c+ a) c(a + b)

Solution. Write the inequality as E > 0, where

WP+t —da? +ab4c)
E"Z a(b+ ¢)
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We have

2E—Z( —c) z(b+c)2 8a2 + 2a(b+ c) _

(b+ ¢) a(b + ¢)
o~ (b+c) —4a?+2a(b+c—2a)
_Z a(b+c)
(b+c—2a)(b+ c+ 4a)
_Z a(b+¢) B

=S +e-2) (3 + ) =
‘Zc‘“( bic)_z(““b)(z bt e
=29 (G4 ) ~Te-0 () -
=2 (b-e [E_(a+b;l(c+a)]2

4
23 (b—e) (bc ab+bc+ca)’

._.
+
o
S’
1

and hence
1 1 4
> S0 - 2(_ __—__)=
ZE_Z( 2 ab+ac+bc ab + be + ca
b+ be+ ca 4
=S (h—e)? |2 _ ]:
Z( °) [abc(b+c) ab+ be+ ca

— )2 — 2
_ 1 Z (b — ¢)*(ab — be + ca) >0
abe(ab + be + ca) b+ ¢

Equality holds if and only if a = b= c.

*

46. If a,b, c are positive numbers such that abc = 1, then

3 1 1 1
a+b+ct 46> = (a+b+c+—+—+—)
2 a b ¢

Solution (by Michael Rozenberg). Without loss of generality, assume that
a = min{a,b,c}. Let z = vbe (z > 1) and

1
Flabe)=a? 46+ 2463 (asbtet s t3+=).
2 a b ¢
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We will show that

Fla,b,c) > F (a, Ve,

We have
3 1 2
P(a,b,)~F (,Vhe, VEe) = (b= = 5 (b+e=2vbe 4 54— — —=) =
1 2 3
:§(¢5 Vo) [2(vE+ Vo) -3- ] 2
1 2
> 5 (Vb-ve) (8‘/__3_17)—
1 2
25(\/5 Ve) (8-3-3)
and
1 28 — 625 + 122% — 623 — 322 4 2
F (a, Ve, Vbe) = F (ﬁ ,a:,:r:) - - _
_(z —1)%(z* — 423 + 322 +4x+2)
N 24
N2 (2 9 102 L a2
_(@-1)?[* -2 -1)2 4o +1}>0
24 -
Equality holds if and only if a =b=c =1
*
47. Let a,aq,...,a, be positive numbers such that ay+a+---+4a, =n.
Prove that
ayag . -an(l +l+ +i-n+3)53
ay an

Solution. We will use the induction way. For n = 2, the inequality is
true because it reduces to ajag < 1 with a; + a3 = 2. Assume now that
a, 2 ay 2 --- 2 ap and denote by E,(a1,ay,...,a,) the left hand side of
the inequality We have

a a PR a
< WFot o
n

We will show that

En(a,]_,GQ,. . :an) < En(bl:a2)- 3 Qn—1, 1) S 3)
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where by = a1 +a, — 1,51 >0
The right side inequality follows by the inductive hypothesis, because
by +as+---+an_1=n-—1and

En(b17a2:-- -1an—1)1) = E‘n—l(blia’21' . )a'n-—l) S 3

The left side inequality is equivalent to

1
(l—al)(l—an)(—+...+ —n+3)§0.
ag an—1
It is true, since 1 —a; < 0,1 —ap > 0 and
_on2 o2 o2
‘L+___+ 1 > (n—2) _ _(n-2) >(n 2) >
a Qn—1 ay+ -+ ap—y n—aiy —an n—a
__on2
>z s
n—1
Equality holds if and only if a; = ap = - - =ap = 1.

*

48. Let a,b,c be the side lengths of a triangle. If a® + b® + c® = 3, then
ab 4+ bc+ ca > 1+ 2abe.
Solution. Write the inequality in the homogeneous form

a® + b% + ¢?

3 [3(ab + be + ca) — (a2 + b + cz)] > Babe.

[a? + b2 + 2 >.a+b+c
3 - 3 ’

it suffices to show that

Since

(a+b+c) [3(ab +be+ ca) — (a? + b + c2)] > 18abe.

Using the classical substitution a = y+2,b = z4+z and ¢ = z+y (z,y,2 > 0),
the inequality becomes

23+ 3 + 2% + 3zye > zy(z + y) +yz(y + 2) + 2z(2 + ),

which is just Schur’s Inequality. Equality occurs if and only ifa=b=c=1.
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*
49. Let a,b,c be the side lengths of a triangle. If a® + b + ¢ = 3, then
a+b+c2>2+ abe.
Solution. Without loss of generality, assume that a > b > ¢ From

3
3=a2+b2+c22a2+%(b+c)2>§a2,

it follows that a < /2 Let
E(a,b,c)=a+b+c—2—abc

b2 4 ¢2

andt = , t <1< a We will show that

E(a,b,c) > E(a,t,t) > 0.

With regard to the left side inequality, we have

a(b—c)? 3 (b—c)? _
2 A+b+c

E(a,b,c)—E(a,t,t) =a(t>—bc)— (2t—b—c)=
(b c)2 3a 2 .
T2 (a2+2t2 _2t+b+c) -

(b — )2 [2t(3a — 2t) + a(3b + 3c — 2a)]

= >0
2(a? +2t2)(2t + b+ ¢) -

because 3a —2t > 2(a—t) > 0and 3(b + ¢) —2a > 2(b+ c—a) > 0.
Sincet < 1 and

E(a,t,t) =a+2t—2—at> = (1 - t)(a+at — 2),
the right inequality E(a,t,t) > 0 is true if and only if at > 2 — a; that is

3—a?
2

By squaring throughout, the inequality becomes

a >2—-a

(a—1)(8—a?—a% >0.

Since 1 < a < V2, wehavea—12>0and 8—a-a3>8-2-2/2> 0.
Equality occurs if and only if a = b= ¢ = 1.
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*

50. Ifa,b,c are the side lengths of a non-isosceles triangle, then

a)

a+b b+c+c+a
a—b b—-¢ c¢c—a
a2+b2 b2+c2 C2+a2
22— 02 B2 @2 g2

> 5

b)

Solution. Since the inequalities are symmetric, we will consider a > & > ¢.

a)Setz=a—candy=b—c¢. Froma>b>cand a < b+ ¢, it follows
that > y > 0 and ¢ > z —y. So, we have

a+b+b+c+c+a_2c-{ z+y 2c+y_2c+x

a—b b—c c—a  zT—y + Yy PEE

1 1 1
=20( +___)+.’B+y>
z—y y =) T—y
2 2(z —
S oty 2emy) Thy
y T—y y T—y

:2($_y+ y )+125
y | z—y

b) We will show that

3.
2R TR 2t2_a2"

that is b2 2 .2
02_b2+bz_cz >

a? (b + ¢)?

Since <— 5 » it suffices to show that
at—¢ a*-—c

a? — ¢’

b? c? (b + c)?
2o P

22 — 2

This inequality is equivalent to each of the following inequalities:

9 1 1 2 1 1 ) 2bc
b (aQ—b2_02—02)+c (bz—c:2 a’—c? >

al—c2’
B2(b2 — %) c*(a® — b?)
o ti o2 2bc,

[b(62 — ) — c(a® = b%)]" > 0.
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Under the condition a > b > ¢, equality occurs for a degenerate triangle

b
with @ = b+ ¢ and - = z;, where z; ™ 1.5321 is the positive root of the

¢
equationz3 —3z—-1=0
*

51. Let a,b,c be the lengths of the sides of a triangle. Prove that

a2(2—1)+b2(§—1)+c2(§—1)20.

1 1
First Solution. Using the substitutions a = —, b = v and ¢ = L the
z
inequality becomes
l

%(3—1)+—(3—1)+i(3—1) >0

z2 \y Y2 \z 22 \z
or

yz*(z = y) + z2%(z — 2) + 2 (y — z) 2 0.

Without loss of generality, assume that a = min{e,b,c}, and hence

r = max{z,y,z}. Denoting the left hand side of the last inequality by
E(z,y, z), we will show that

E'(m,y,z) > E(y,v, z) > 0.
We have
E(z,y,2) - E(y,y, 2) = 2(2°~*)— 222 — ) +13(z —y) —v* (27— ?) =
= (z - y)z —2)(zz +yz - y7).
Since (z — y){(z — 2) > 0 and

2b—c b— b—
zz+yz—y > y(22-y) = e = ( a)‘;?(:-i- c) 50,

it follows that E(z,y,z) — E(y,y,z) > 0 On the other hand, we have
E(y,y,2) =y2(y—2)* 20

Equality occurs fora = b = c.
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Second Solution (by Alezandru Zamorzaev). Write the inequality as

E(a,b,c) > 0,
where
E(a,b,¢) = a®b? + b3c? + Ba? — abe(a® + b2 + ¢2).
Since
2E(a,b,c) = Z a3(b—c)? - }: a?(b® —
and
Z a?(b3 — %) = Z a?(b - ¢)3,
we have

2E(a,b,c) = Zaz(b— c)®(a—b+¢)>0.
*

52. Let a,b, c be the lengths of the sides of an triangle. Prove that

1 1 a b c
(a+b+c)( +b+ ) 6(b+c+c+a+a+b)'

Solution. Since

(a+b+c)(%+%+%)_sz(b;cch

and

a b a—c
2 (b+c + cta a+b) Z b+c - z Z bt+c
_ (a — b)? _ (b—c)
Zb+c §:c+a 2 (b+¢) c+a)_>:(c+a)(a+b)

we may write the inequality as

> (b—¢)?S. 20,
where

1 3

Sa:E_ c+a)a+b)
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Without loss of generality, assume that a > b > ¢ Since S, > 0,

g _ L 3 _alb—c)te(b—a)+ b2

T a (a+b)bte) aclatbbto)
_alb—c)te(b+c—a)+ b -2
B ac(a + b){b + ¢)
_(b=c)atbt+e)+e(b+c—a)
B ac(a+ b)(b+ ¢)

>0

and
Y (b—c)2Sa > (c — )25, + (a — b)%S, > (a — b)*(S, + S.),

it suffices to show that
Sp+S5.>0

This inequality is equivalent to
(a+b)(a+c)(b+c)? > 3abe(2a + b+ ¢).
Let b+ ¢ =2z We have a? > 22 > be, and hence

(a-+b)(a+c)(b+c)? —3abe(2a+b+c) = 42%(a? +-2az+ be) — 6abe(a+z) =
=daz?(a+2z)—2bc(3a% 4 3az — 22°) > daz*(a+2z)—2x%(3a® + 3az—22°%) =
= 22%(22% + az — a?) = 22%(z + a)(2z — a) = 22%(z + a)(b + ¢ — a) > 0.
Equality occurs if and only ifa = b= ¢.

*

1
53. If a1,a92,a3,a4,as5,a¢ € [E,ﬂ], then

a1 — ag as — ag as—a1>0
a2 +az ag+ a4 a1 +ax —

Solution. Write the inequality as

a—a 2a, — +
z(l 2 )>3 Zal az 0326'

az + ag az + ag

2 1
E_ V3+ 7§ = 0, by the Cauchy-Schwarz Inequality

Since 2a1 —ay + az >

we get

st [Sea-wia] (T

a2tas T N(ap +a3)(2a; —ay + az) Y aiar + Y ajaz’
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Thus, we still have to show that

(Cw) 23 (L ma + L ares).

Indeed, letting z = a; + a4, ¥y = a2 + a5, z = az + ag, we have

2
(z al) -3 (Z a1a2+z alag)z(r +y+2)%—3(zy + yz + 2z) > 0.
Equality occurs if and only if a; = a3 = a5 and a3 = a4 = as

*

54. Let a,b,c be positive numbers such that a® 4+ b% + ¢ > 3. Prove that

0% — a2 b5 _ b2 &5 — 2

>
a5+b2+c2+a2+b5+c2+a2+b2+c5‘0

Solution. The inequality is equivalent to

1 1 1 3
< .
P B R B W e Ry L By s I

Letting a = iz, b = ty and ¢ = tz, where t > 0 and z,y,z > 0 such that
24 y? 4 22 = 3, the condition a®+b*+¢? > 3 imply ¢ > 1, and the incquality
becomes
1 4 1 4 1 <
135 +y2 —*—ZQ 932 +t3y5+ ~2 $2+y2+ t325 -

We see that it suffices to prove this inequality for ¢ = 1. In this case, we
may write the inequality in the form

1 1 1
<1
x5+3—m2+y5+3—y2+25+3—22_

Without loss of generality, assume that z > y > 2. Two cases are to consider.
Case z < V2. We have also y,z < V2. The desired mequality follows
by adding the inequalities

— z2 a2 _ 2
1 c3-= | 1 <3 v’ 1 3=z
54+3—22" 6 Wyw+3—-—y2~ 6 2243—22— 6
We have
1 3—a? (z—1)%(25+22% - 32° — 62— 3)

25 +3—z2 6 6(z° + 3 — z?)
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and
3

6
2:5+2:B4—3:1:2—6x—3:a:2(x3+2x 3-———2)<
x xr

12(2\/§+4—3—3\/_—%)=—a:2(%+\/§)<0.

Case £ > /2. From 22 + 4% + 22 = 3, it follows that y2 + 2° < 1 Since

1 1 1 1 1 1
x5 +3—z2 * Yo +3—y? + B3_2 z5 +3—z? + 3—y? 322

and
1 1 1 1

1
13—2 234322 (2v2-1)z2+3 < (2v2-1) 243 Gk

it suffices to show that

1 1 5
< =.
32 L3_2 =G
Indeed,
1 1 5 9(yi+22—1)— 59222

3—y2+3—32—6: 6(3 — y2)(3 — 22) <0

which completes the proof. Equality occurs if and only ifa =b = ¢ = 1.

Remark Since abc > 1 yields a? + b2 +¢2 > 3 (by the AM-GM Inequality),
we get the following statement.
o If a,b,c are positive numbers such that abe > 1, then

a5—a2 b5_b2 c5_c2
S a2 T o w2t e > 0.
a’+ b+ 2?40+ a4 b2 4P
This is a problem from IMO-2005, proposed by Hojoo Lee. A special award
was given to Jurie Boreico from Moldova, who noticed in his solution that

a?{a® - 1) a® -1
aS+ b2 +c2 = a(a? + b2 4 c?)’

and hence,

a’ — g2 1 1
Z:c;z5+b? 62202+b2 c2z(a_5)2
1
P> S 2 _ = —
P R L R D> _(a® —be) = (a2+b2 Z(a
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*

55. Let a, b, ¢ be positive numbers such that z + y + z > 3. Then,

1 1 1
+ + <Ll
B+y+z r+yd+z z+y+ 23

Solution. It is easy to check that it suffices to consider z + y + 2 = 3. In
this case, we may write the inequality in the form

1 + 1 + 1 <1
23 —z2z+3 PB—-y+3 22—243" 7
Without loss of generality, assume that z > y > 2z Two cases are to consider.

Case £ < 2. We have also y,z < /2 The desired inequality follows by
adding the inequalities

1 <5—2x, 1 <5—2y’ 1 <5-2z
23—z43~ 9 v¥-y+3~ 9 2—2z+37 9
Indeed,
1 5—%_jx—n%h+3xm—m<0
3—z+4+3 9 9(z2 — z + 3) -

Case z > 2 Fromz + y+ 2z =3, it follows that y + z < 1. We have

1 1 1 1 1 1
<
z3—z+3 + Y3 —y+3 + 22—2z+3 < z3—243 + 3—y T3
< 1 + 1 1
s T3, 32

Thus, it is enough to show that

1 1 8
+ < —.

3—y 3—-279
Since y + z < 1, we get

8 —-3—-15(1—-y—=2)-8

RIS T (I-y=2) =8z
3—y 3—-2 9 9(3 —y)(3—2)

Equality occurs if and only f z =y = 2 = 1.
Conjecture. If z;,z3,.. ,Zn are non-negative numbers such that

zy+za+ - 2o 2,
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then for any p > 1 the inequalities hold

1 1 1
+ <l
(a) mf+$2+.+xn+ml+$g+.+xn x1+m2++mn
Ir1 o)) In
b + <1
():c‘f+$2+- +xn+m1+m§’+--+xn Ty + 22+ -+ 2h
*
56. Let zy,x0,. ,z, be positive numbers such that zizo.. z, > 1.

If a > 1, then

ma
> L > 1.
Solution. First we observe that it suffices to consider only the case

12 . Tn=1.

z:
In order to show this, let r = g/zyz5 . z, and y; = Tz for i =1,2, ..,n.
Note that r > 1 and y1y2  yn = 1. Thus, the inequality becomes

y2+"'+yn
Wt e

and we see that it suffices to prove it only for r =1, that is, for ;25 . .z, = 1
Under the assumption z;z5.. z, = 1, we will show that there exists a
suitable real p such that

zp it
ma_*_m 2 P p e p-
ttZ2 btz Tyt -4 2n

(1)

If this claim is valid, then adding (1) with the analogous inequalities for
2, ..,Zn Will yield the required inequality. Inequality (1) is equivalent to

zh+ -+ 2B > (22, ) P(za 4 -+ ).

Choosing

-1
n

reduces the inequality to the homogencous inequality

-1
zh+ -4 P _>_($2...xn)£~_l(:rg+- c+zp)
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Since

(zg...zn)m

=l (mz+---+xn)P-1
- n—1
(by the AM-GM Inequality), it is enough to show that

i e (m2+ +mn)?’
n—1 n—1 '
This inequality follows by applying Jensen’s Inequality to the convex

function f(z) = zP. Equality in the given inequality occurs if and only

fzy=290=---=2z,=1.

*
57. Let zy,z,...,1, be positive numbers such that 1z, . z, > 1.
Ifrn>3 and n__2§a<1, then

zt
> = — =t
$1+$2+ +$n

Solution. The first part of the proof is similar to the proof of the preceding

inequality. Finally, we have to prove the inequality

l-p
Ty + -+ Zn 2 (T2 Za)™ T (254 -+ 28)

for 1 1 1
. ot , ——=<p<l
n n—2
-1
For p = — the inequality reduces to

$2++xn2 “‘12/x3...$n+"'+ "_‘2/..".’,'2---9311—1 )

which can be proved adding the inequalities

z3+ -+ Zn " zog+ -+ Zn-y

> "Jx3...Zn, ., > "¥Hro...Tp-1.
n—2 n—2
For — 5 < p < 1, by the Weighted AM-GM Inequality, we have
1+(n—2 n— l-p
—il(_—p—lga:2+m3+--- +z, 2 T :1:5(:1:213.. Zp)m-T .
Adding this inequality to the analogous ones for z3,. .,T,, we get the

required inequality. Equality occurs in the given inequality if and only if

331:2:2:---:3;”:]__
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*

58. Let zy,z9,. ,z, be positive numbers such that z1zo. .z, > 1.
Ifa>1, then

) d <1
11?'*‘-'32‘*" +xn

1
n—1
Casel < a < n+l Sincezyzz. z, > | implieszi+zo+ - +z, > n (by
the AM-GM Inequality), it suffices to show that the required inequality holds
for z1+z2+- - +zn > n. We may consider only the case z; + 22+ +z, = n.

itz 4+ +z z; )
Indeed, if we set r = ! 2 nandyi=?1forz=1,2, ..,n, then

n
r>landy; +y2+ - +y, =1 The inequality becomes

Solution. We will consider twocases 1<a<n+landa>n—

i <1
z a—]1,,0 s — 1
r Y1 +y2 + + Yn

and we see that it suffices to prove it for r=1; that is, for z;+z3+- +z, =n
Under this assumption, write the required inequality in the form
xy op) Zn

: <1.
m?—$1+n+m§’—x2+n+ +m${—$n+n

For any z > 0, by Bernoulli’s Inequality, we have
r*=[1+(z-1)]"21+a(z-1),

and hence,
r®—ztn>n—a+1l+(a-1z>0

Consequently, it is suffices to show that

> L <1
—n—a+1l+(a—1)z; —

=1
This inequality clearly holds fora =n+ 1 Fora <n + 1, using

(@ —1)z; 1 n—a+1
n—a+l+(a—-1)z n—a+l+(a-1)z;’

it may be rewritten as

= 1
> > 1.
n—a+l+(a-1)zx

=1
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Setting y; =n—a+ 1+ (a—1)z; fori =1,2,...,n, we have y; > 0 and
Y1 +y2 + - +yn = n? The inequality reduces to

11 1
—+ =+ +—21,
Y1 Y2 Yn

which is an immediate consequence of the AM-HM Inequality

1 1 1 2
(tyat-tyn) | —+—++—)2n"
31 Y2 Yn

Case a > n — 71 As above, we may consider that zyz2.. z, = 1.

Under this assumption it suffices to show that

(n— 1)z, ¥
¢+ 2o+ ... 25 ¥+ 2+ - +2f

<1 (2)

for a suitable real p, and to add then this inequality to the analogously
inequalities for z3,. .,zn. Sett = Wz . z,. By the AM-GM Inequality,
we have zo + -~ + 2, > (n— 1)t and 2§ + --- + 28 > (n — 1)tP. Thus, it
suffices to show that

(n—l):nl 1::1) <1
¢+ (n—1)t  zf+(n—1)tp ~

Since z; = pres g this inequality is equivalent to
(n— 1" —(n— 12 —¢""P +1>0,

where ¢ = (n — 1)(a — 1). We will now show that the inequality holds for
(n—1){a—-n-1)

n

Indeed, for this value of p, the inequality successively becomes the following'
(n— 1" — (n— 10 —t™""V 4 1>0,
(n—1)e(t" = 1) = (" = 1) (#2720 4 0030 gy 1) >0,

(- [( =) (0 - - 1)] > 0.

We see that the last inequality is true for ¢ > n? — 2n; that is, for
1 . : N .
a > n-— Equality occurs in the given imequality if and only if
n—
Ty =29= - =zn=1.
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*

59. Let xy,x2, .,zn be positive numbers such that xixs...2, > 1

l’)
2Scr<1,then

If-1-

2. -
P+ 22+ - +2q

Solution. It suffices to consider only the case where zyz3...2, = 1. By
the Cauchy-Schwarz Inequality, we have

3 z) o (@itzat 4z
{22t 420 T Y 2y @f 2+ + 2n)
(z1+ 2o+ 4 2,)°

n n :
(z1 422+ +za)2+ Y 22— 5 22
i=1 =

Thus, we still have to show that

Case —1 < a < 1. We can prove the inequality using Chebyshev’s
Inequality and the AM-GM Inequality, as follows:

n ) 1 n . n .
Zmi > H (.ZI"—&) (zmih&) >
i=1 i=1 i=1
n n
2 @iz w)1-m Y glte = o glhe

—1. It is convenient to replace the numbers

z1,%2, ..,2n by a:(n 1)/2 ("_1)/2,. G es respectively. We also use
) n—1)(14+a
the substitution ¢ = ( )2( ), and note that —1 < g < 0. Thus, we

have to prove that

n n
Zx?"l > Z z]
i=1

when z;z5...2, = 1. Using the well-known Maclaurin Inequality

Zx" > Z Ty. ZIn,

ciclic
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and Chebyshev’s Inequality together with the AM-GM Inequality, we get
the desired inequality

n - o 1 n 1 n
Z;ri 22;2;(2% q) (Ex?)z
1=

Now the proof is complete Equality in the given inequality occurs if and
only ifzy =z9=---=2z, = 1.

*
60. Let n>3 be an integer and let p be a real number such thet 1<p<n—1.
pn—p—1
If 0<zy,20, . ,2p € ——————— such that z,29. .2, =1, then
p(n—p-—1)
1 1 1 n
>

+ +ot >
1+pzy 1+ pzo 1+pr, ~ 1+p
Solution. We will prove by induction that

1 N 1 N 4 1 S n
1+qzy 14 gz l1+gzn — 1+9¢

for any ¢ > p. For n = 2, the inequality reduces to

(g—1)(z;1 —1)°
(14 gz1)(1+qz2) ~

which is clearly true. Consider now that the inequality holds forn—1, n > 3.
Without loss of generality, assume that

Tp_1 = min{zy,za2,. .,7n} and zp, = max{z;,z2,...,Zn}.

The condition z;zy . z, = 1 implies 2, <1 and z, > 1 We must show

that the inequality (3) holds for ziz2.. zp = 1 and 21,22,. ., Zn £ P,
where
pn—p—1
Pn=—F———% -
" pln—p-1)

Without loss of generality, assume that

zn -1 = min{z1,22, . ,zp} and z, = max{z;,z2, 2 Zn}
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The condition z1x2 zn = 1 implies z,_y < 1 and z, > 1 Since
Tn-1Tn S_ In, We have
Ty, -3 Zp_2,Zn-1Zn < Pn < Pn-i,
and, by the inductive hypothesis, the inequality holds
1 n—1
+ -+ + 2
1 + gz 1+ qzp—2 1+ gzp_1zn 1+ ¢
for any ¢ > pwith | <p<n—2,thatis, foranyg>pwithl <p<n—1
So, it remains to show that
1 n 1 S 1 + 1
1 + gz, l1+qzn = 1 + 92,020 1+¢’
which is equivalent to

(1 =zp-1)(zn — 1) (qz:z:n_lmn — 1) > 0.

Since this inequality is true for g?zn_;z, > 1, we still have to show that (3)
holds for ¢?z,_,z, < 1 On this assumption, we have

1 1 qZn_i 1

+ =1- + >

1+ gqzn1  1+4+q2n 1+gqzn1 1+ qzn
>1-— ! + ! =1
1 +qz, 1+ qzy

Thus, it suffices to prove that
1 1 1 n—qg—1
+ + -+ >4
l+qzy 14 gz, 1+ gzpn_2 1+gq
Taking into account that z; < p, fori =1,2,...,n— 2, we get

1+ qz; l+q ~ 1+¢gpn l1+g¢
_mg—qg—1l-g(n—g—1)ps
(1 +gpn)(1 +4q)
@-pPlln—p-lg+n-p-1]
pln—p—1)(1+qp)(1+q) =
Equality in the original inequality occurs if and only if z; =20= - =2,=1.

_'n—q—l> n—2 'n,—q—1=

Remark For p— n — 1, we obtain the well-known inequality

{ 1 1
: : > 1
1}-(11—1)2:1‘i 1-I—('n—1):c2+ +1+(n—1):vn_ '

which holds for any positive numbers z;, 2, .., 2, with TiZ... %y =1
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*

61. Let a,b, c be positive numbers such that abc = 1. Prove that

1 1 1 2
Gra " 070 o2 0700400+ ="

First Solution There are two of the numbers a, b, ¢ either greater than or
equal to 1, or less than or equal to 1. Let a and b be the numbers having
this property; that is (1 —a)(1 — b) > 0. Since

1 1 1 abla=—b)*+(1-ab)?
(1+e)? T (1402 1+ab  (L+a)2(1+5)2(1 +ab)

20,

it suffices to show that

1 1 2
>1
Trab T 07 Qxa(l+0(1+09 =

1
Substituting ¢ by 3 the inequality becomes
a

1 ah? 2ab
T1ab T U+ab)?  (T+a)(1+b)(1+ab

)21.

This inequality is equivalent to

ab(1 — a)(1 — b)
AT o) b)i a2 ="

which is clearly true. Equality occurs if and only if a =b=c=1.

1
Second Solution (after an idea of Pham Kim Hung) Set Tre- 2

1 1+y 1 142 1—=2 1 -y
= = . That i = , b=
146 2 and1+c 2 ab 15 a 142 1+vy

1—=2

Tz
implies

c= where —1 < z,y¥,2 < 1 We have to prove that z+y+z+2zyz =

(1+22+(1+9)2+ (1+ 2+ (1 +2)Q+ )1+ 2) > 4

that is
24+ + 2242z 4y F2)try+yz+zz 20
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Since
2 _ g2 g2 2
a:y+312+z:c:($+y+z) ) Y )

the inequality transforms into

4yl 422 Az vyt ) (e+y+2)? >0
Substituting = + y + z by —zyz, the inequality becomes

z? + % + 2% + 22y%2% > dzy.
By the AM-GM Inequality, we get
224 y? 4 22 22yt > 4W = d|zyz| > dzyz
*

62. Let a,b,c be positive numbers such that abc = 1. Prove that

a® + b+ c? +9(ab+ be + ca) > 10(a + b + ).

First Solution. Write the inequality as f(a,b,c) > 0, where

s ol 101
flab,c) = a® + b +¢ +9(E+E+E)—10(a{—b+c).

Without loss of generality, assume that ¢ > 1 We will show that
f(a,b,c) > f (a, Ve,
The left inequality is true, because

2
a6, 1 (2,56, V) = (-0 + 28V (vh- vy -

:(\/5_\/5)2[(\f+f) +——10]

and
(\f+\/‘) +——10>4\/E+——10—\/_+9a—10>
4 — —
2—+9a—10>l+9a—10=(a 1)(9a 1)20,
a a a
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With regard to the right inequality, substituting a = 22

f(a,\/E,\/E):f(xz 1 l)=$6—10x4+18x3—201+11 _

,>1, we have

'tz z?
(2 —1)%(2? + 223 — 722 4 22 + 11)
= — >
S (z —1)2(2? + 223 — 722 + 22 4 10)
_(z = 1)%(z 4+ 1)(2® + 22 — 82 + 10)
= 5 X
z

Since
13+$2—8x+1022x2—8x+10=2(:c—2)2+2>0,

it follows that f (a, vbe, vVbe) > 0 Equality in the given inequality occurs
ifand onlyifa=b=c=1.

Second Solution We write the inequality as

9
Z(a2+——10a+171na) > 0.
a

. . 9
So, it suffices to show that the function f(z) = % + —— 10z  17Inz is
x

non-negative for z > 0. Since

9 17 223 —1022 4172 -9
flz)=20-——104 =22 T 77
x x i
(z — 1)(23‘:2 — 8z + 9)

= 2:2

and 222 — 8z + 9 = 2(z — 2)2 4+ 1 > 0, it follows that f/(z) is negative for
0 < z < 1 and positive for z > 1 Therefore, f(z) is strictly decreasing for
0< x <1 and strictly increasing for 2 >1 This result implies f(2)> f(1)=0.

Remark. Actually, the following stronger inequality holds
a4 b4y 15(ab + bc + ca) > 16(a + b+ ¢)

for any positive number a,b, ¢ satisfying abc = 1. This inequality can be
proved using the mixing method as in the first solution above Finally, we

find that the inequality f (a, vbe, vVbe) > 0 holds if and only if

244228 — 1322422 +17>0
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Writing this inequality in the form
14 (z+ 1)z —2)(z® + 3z —8) >0,
we see that it 1s true for £ > 2 Also, for 1 <z < 2, we have
1+ (z+ 1)(z—2)(22432—8) = 1 - (2+2—22)(2°+32—8) >
>1-— % [(2—{—2:—9:2) + (:1:2-1—351:—8)]2 =4({z—-1)(2—z) 2 0.
*

63. Let a,b,c be non-negative numbers such that ab+ bc+ ca = 3  Prove

that
a(b? +c?)  b(c?+a?)  c(a?+b?)
a? + be b2 + ca cl4ab T

Solution. Taking into account the known inequality

(z 4y +2)2 > 3(zy + yz + 22),

it suffices to prove the stronger inequality

be(a? + b2)(c? + a?)
2 (b2 + ca)(c? + ab) ~

In order to homogenize this inequality, we replace the right hand side by
Z bc Since

be(a? 4 b2)(c? + a?) he — abe(a®— 83— + ab? + ac?—abc)

(b2 + ca)(c? + ab) (b2 + ca)(c? + ab)

we have to show that
> (a® +bc)(a® — b — ® + ab? + ac? — abc) > 0
This inequality is equivalent to
> a®+2abcy a? > 3 be(b® + ) 4 abe I b,
or
Zas(a —b)(a—c) + a?ch(b— c)® > 0.

Since Z a*(a — b)(a — ¢) > 0 by Schur’s Inequality, the inequality is clearly
true Equality occurs if and only ifa=b=c=1
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*

64. If a,b, c are positive numbers, then

2 2 .2 2, 12, a2
PRSI S Cih i L §
b c a a+b+4c

Solution. Write the inequality as follows

2 2 B2, a2
Z(%—2¢1+b) 26(& +b*+c¢ _a+§+c)’

p ea+b+ec
- b)? 2

Z(a‘ ) 2 Z(a_b)Q,

pa b aer-i—ccyC

(b—c)?A + (c—a)’B+ (a—b)*C >0,

where

a+b_11 B:b+c—l, C=c+a
c a b

Taking into account the identity

A= -1

(b—c)?A+ (c—a)’B+ (e —b)*C=

[(e—c)B+ (a —b)CF + (b—c)*(AB + BC 4 CA)
B+C '

it suffices to show that B+ C >0 and AB+ BC +CA >0 We have

S E
B+C= ab +C(a+b >0

and

a®+ b3+ c2+3abc—ab(a+b)—be(b+c)—ca(c+a) S

AB+BC+CA=3+ > 3,

abc

according to Schur’s Inequality of three degree
23 + 0% 4 3 + 3abe > ab(a + b) + be(b + ¢) + calc + a).
Equality occurs if and only if a =b=c.
*

65. If a,b,c are positive numbers, then

a? . b2 N c? >3(a3+b3+c3)
btc c+a a+bT 2a?+b2+4c2)
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First Solution (after an idea of Kunthiko Chikaya). Since

2
(a+b)(b+c)c+a z$=zaz (a+b)(a+0) =

=abed at+) a'+ 3 dPb+)=abc} a+ (D %) (D a) =
= (X0 (abe+3 %),

the inequality can be written in the form

2(3"a) (3° %) (abe+ Y a®) 2 3(a+ b)(b+c)(c+a) (3 a°)

This inequality can be obtained by multiplying the inequalities

2 (Za) (Za2+32b0) > 9(e+b)(b+c)(c+a)
and
3(2 %) (abe+320%) = (34°) (o +330c)

The first inequality is equivalent to

220,3 > Zbc(b+c),

which is true because

2y a3 be(b+)=Y (b3 + )= befb+c)=S(b+¢)(b— )2 >0.

Setting X = 5 a®—3abe = (3 a)3—3 (3" ) (Z be), the second inequality
is successively equivalent to

3(2_a%) (X +dabe) > (X + 3abe) (3 a®+33 " be),
X (23 a® =33 be) +9abe (3 a? - 5 be) 20,
(3oa? =30 [(3a) (230 - 33 be) + 9abc] >0,
(3oa®=3"be) 23 a® - be(b+ )] 2 0,
-] b+ )b -c)?] >0.

The last inequality is clearly true, and the proof is completed Equality
occurs if and only ifa=b=¢
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Second Solution. Write the inequality as A > B, where

a? ad + b8+ 8
A=22 5 e D
Since
ale —b)+e(la—c) «—alea—1b) ala—c)
A= E b+e _Z b+c +Z b+c -
(b— ¢} ¢(e ~b) _ c)?
= b
E c+a +Z a+ b e+ +C)Z {—b)a+c)
and
1 3 3 2 2y
Br——mZ(b-*C —bC—bC)—
_ 1 Y
= S (b+e)(b—c),

we may write the inequality in the form
Sa(b— )2 + Sp(c— a)® + Se(a—b)* >0

where

S - a+b+c  btec a® 4+ b3 + & — 2ebe
* T (a+b)(ate) a?+b2+c? (a+b)(atc)a?+ b2+ c?)]

By the AM-GM Inequality, we have a3 + b3 + ¢ > 3abc. Hence

abe
>0
(a+b)(a+c)a?+b2+c?) =

Sa 2

and, similarly, S, > 0 and Sc > 0

*

66. If a,b,c are given positive numbers, find the minimum value E(e,b,c)

of the expression
azx by cz

= + +
y+z 2z4+x 1Y

for any non-negative numbers z,y, z, no of which are zero.
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Solution Consider that ¢ = max{a,b,c} Since

B :Za(x+y+z)—a(y+z)=
y+z yt+2
a
=(z+y+ -Ya=
(zty+2)d og =30

=5 [X0+2] (2-55) -2

by the Cauchy-Schwarz Inequality we get
1 p) a+btce
25 (2-ve) =3 a= Vab+ Vbt Vea - ——,
Ja Vb e

with equality if and only if = = . Consequently, for
quality Y = Tis T 54 equently

V@ < Vb + /¢ the expression E has the minimum value

E(a,b,c) = \/_+\/_+\/_ a+b+c
fora:=\/5+\/5—\/5,y=\/E+\/_—\/5,z=\/5+\/5—\/5

We assert now that for \/a > vb + /¢, the expression E is minimal for

Y c . .. .
z=0and == R and its minimum value is
A

E(a,b,¢) = 2Vbe.

Since /a > Vo + V¢, it suffices to show that

Az N by 4 cz 22\/1;’
vyt+2 z42z2z x4y
where A = (\/l_)}— \/5)2
Setting y + 2 =2X, 2 + 2 = 2Y, z + y = 27, the inequality becomes
AY+Z2-X b(Z + X — -
( +X )+( +Y Y)+c(X+ZY 2)24\/@

Y X Z Y X Z
(AY + b;;) + (b? + cE) + (c—z: + A}—) > 2A + 2vbe

The last inequality follows immediately from

Y X Z Y
A—+b=> 2V —+c— v
X+ Y_Q Ab by+cZ_22 be, ¢

Nl
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Finally, for a = max{a, b, ¢} we have

a+b+c
E(a,be) = i\/—+\/—+\/— TEOFE W va<vE+e
*
67. Let a,b, c be positive real numbers such that a+ b+ ¢ = 3. Prove that
1 1
St @ F>a?+ b+

First Solution. Write the inequality in the form

1
Z(—2—a2+4a—-4) >0,
a

which is equivalent to

Z (1 —a)*(1+ 2a — a?) >0.

al

Without loss of generality, we may assume that a > b > ¢. We have to
consider two cases.

Case a <1+ /2. Sincec<b<acx< 1+ V2, we have 1 + 22 — a? > 0,
14+20—b>0and 14+2c—c?>0.

2
Case a > 1+ /2. Sinceb+c=3—a<2—\/§<—3-,wehave

be 1lb !
Sgttai<y
and hence
1 1 1 1 1 2
2+b2+ 2>b2+z§235>18>(a+b+c)2>a2+b2+c2.

Equality occurs if and only ifa =b=c=1

Second Solution. Since
1 1 1 > 1 1 1
a—2 + 5'2‘ + - — 4+ -4 —,

¢2 " ab  bc ca
it suffices to show that

i —1—+i>a +b2+c
bc
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or
abc(a? + b% + %) < 3.

Let 2 = ab+ bc+ ca. From the well-known inequality

(ab+ bc+ ca)? > 3abe(a+ b+ c)
2
we get abe < 9 On the other hand, from

a? 402+ = (a+b+c)% — 2ab+ b+ ca),

we have a? 4+ b + ¢? = 9 — 2z. Therefore,

2 —(r — 72

<0
9 pS

*

68. Let a,b, c be non-negative real numbers such that a4+ b+ ¢ = 3. Prove
that
(a® — ab+ b*) (6% — be 4 c?)(c? = ca+ a®) < 12,

Solution. Assume that a < b < ¢. We see that equality occurs for
(a,b,c) = (0,1,2).

Since
a’ —ab+ b2 < b?

and
c? — ca+a? < (a+c)2,
it suffices to show that
ry < 6%,

where x = 3b(a + ¢) and y = 2(b? — bc + ¢2) Note that z = y = 6 for the
equality case (a,b,¢) = (0,1,2) From the AM-GM Inequality, we have

22 + y\3
2

< ( ) .
zy < 3
Consequently, it suffices to show that

Y
=<9
a:+2_



464 8 Final problem set

Indeed,
09—z — % = (a+b+c)? — 3(ab + be) — (b —bc+ ¢?) =
=ala—b+2c) 20.
On the assumption a < b < ¢, equality occurs if and only if (a,b,¢) = (0, 1, 2).
*

69. Let a,b,c be non-negative real numbers such that a + b+ c = 1. Prove
that

\/a+b2+\/;+ c? + \/c+a,2 > 2
Solution. We will use the inequality

VE+ Y2V + ety -z,
which is valid for any non-negative numbers z,y,z with z = min{z,y, 2}
Indeed, twice squaring reduces the inequality to (z — 2)(y — z) > 0 Assume
now that ¢ = min{a,b, ¢} and denote 2 = a + b2,y =b+c? and z = ¢ + b2
Since
z—z=a-¢20,
y—z=((b—-c)(l—-b—c)=(b—c)a>0,

and

x+y—z——-a+b—c+c2:1—-2c+c2=(1-—c)2,

by the above inequality we get
\/a+b2+\/b+c22 Ve+b2+1-c.

Therefore, we still have to prove that

Veta?+Ve+b2>21+4c
By squaring, the inequality becomes

2\/(c+a2)(c+b2) >1+c?—a? - b,

or

ﬂ+a2)(c+bz) > ¢+ ab,

which is clearly true. Equality occurs in the original inequality for

111 _
(a,b,c) = (5,5,5), as well as for (a,b,¢) = (1,0,0) and any cyclic
permutation thereof.
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*

70. If a,b, ¢ are non-negative real numbers, then
a® + b3+ ¢ + 3abe > Zbcm.
Solution. Write the inequality as
a3+b3+c3+3abc—2bc(b+c) > Zbc[ 2(b2 + 2) —b-—c] )

i lZ(b— c)¥b+c—a)> Zbc (b—o .
2 B V2(b2+ ) +b+c

Since 1/2(b% + ¢2) > b + ¢, it suffices to show that

Y (b-c)?S. >0,

where
Se=bt+c—a-— be =c—a+ b
¢ b+c b+c’
Assuming a > b > ¢, we have
Sp=a—-b+ >0,
c+a
a2
=h— >
S.=b C+a+b_0
and
Z(b — )25, > (b—c)%S, + (a—c)Sy > (b—c)%(Sq + Sp).
Since
bc ca b a
Sa+Sp=2c—— - — —¢cf{2- - —
ot % ¢ b+c c+a c( b+c c+a)
1 1
2
o >
¢ (b+c+c+a)_0’

the proof is completed. Equality occurs fora = b = ¢, a = 0 and b = c,
b=0andc=a,c=0and e =1t.

*
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71. If a,b,c are non-negative real numbers, then

(1+02)(1+b2)(1+62)2%(l+a+b+c)2

1
Solution. We can see that equality occurs for a = b =c = 3 Substituting

2

[} . .
a,b,c by 3 the inequality becomes

? ,2)
(

o8

22+ )P+ A2 +4)> 5z +y+2+2)%

Among z,y, z there are two numbers either less than or equal to 1, or greater
than or equal to 1. Let y and z be these numbers By Bernoulli’s Inequality,

we have
2 2 2 2
y°—1 z¢ -1 y°—1 =2¢-1
1 1 > 1
<+ 5 )(-’r 5 )_ + 5 + 5

(2 + 4)(2* + 4) > 5(% + 2* + 3)

Hence, it suffices to show that
(22 + (2 + 22+ 3) > (= Fy+ 2+ 2)2
Writing this inequality as

(22 +1+1+2)(14+ 32+ 224+ 2) > (2 +y +2+2)7,

we recognize the Cauchy-Schwarz Inequality

*
72. Let a,b,c,d be positive real numbers such that abed = 1. Prove that
(1+a)(1+ )1+ +d) > (a+b+c+d)?

Solution. Among a,b,c,d there are two numbers less than or equal to
1, or greater than or equal to 1 Let b and d be these numbers, that is
(b—1){d - 1) > 0. By the Cauchy-Schwarz Inequality, we have

(1-+a?)(14+6%) (14 ) (1+d%) = (1+a2+b%+a?b?)(ct+ 1+d* +2d?) >
> ¢ a+ bd + abed)?
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Since abcd = 1, it suffices to show that
ct+a+bd+1>a+b+c+d.

This inequality is equivalent to (b — 1)(d — 1) > 0, which is true. Equality
occursif and only ifa=b=c=d=1

*

73. Ifxy,z2,.. .,2n are non-negative numbers, then

z2+28 4+ - 422

x1+22+---+xn2(n—1)m+\/ -
First Solution (by Michael Rozenberg). Let us denote

2 Z fL‘i:Cj

Ty +zx2+- -+ zxp 1<i<jsn n
= y Y= , 2= {Yx1Z3... %0,
n n{n — 1)

where = > y > 2 (Maclaurin’s Inequalities). The inequality becomes

n2z? —n(n — 1)y2

oo |

n

or
nz? ~2nzz -+ (n —1)22 + 42 > 0.

Since y > 2, we have

nz? —2nzz + (n - D224 y? =n(z - 2)? + (42 - 2%) > 0

Equality in the original inequality occurs if and onlyifz, =2= - =2z,

Second Solution. Let us denote

i+ 2+ a2 Ty +z2+ 42y .
r= » Y= 1 2= yI1T2...2Tn,

n n

where z > y > z We may write the inequality as
n(y—2z2)>z—z

Since

-z Tl — 2

r—2= 2 ,
Ttz Y+ 2
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it, suffices to show that

5172—'32

nly —z) >
(y—2)2 s

This inequality 1s equivalent to each of the following inequalities
ny? -z > (n - 1):':2
(z, +x2+---+xn)2— (:1:1+:1:2+ -+-9:,2,) 2n(n—1)22,

The last inequality immediately follows by the AM-GM Inequality.
Remark In asimilar manner, we can prove the following inequality for any
integer k > 2

zf + 25+ - +af
n

nk_z(a:l+x2+"'+$n) 2 (nk—l_l)vﬂxlx? _.x+l\=/

For k = n = 3 we get an inequality from the Austria National Olympiad
2006

*
74. If k is a real number and z1,z2, . ,Tn are positive numbers, then
(n—l) ( n+k+'U3+k+ : +$n+k)+$11‘2 % (CL"f {—x’z‘.{_ .. +xi) >
> (214 zo+ - - +2a) (275 Lpgpth-lq .. pgn+h-1),

Solution. We will proceed by induction on n as Gabriel Dospinescu had
proceed in {3] to prove Suranyi’s Inequality (case k = 0). For n = 2 we have
an identity, while for n = 3 we get Schur’s Inequality

ZI"“ zy — 22)(z1 —23) 2 0

Suppose that the inequality is true for n numbers and let us prove it for
2 + 1 numbers. Since the inequality is homogeneous, we may consider that

T, +x2+ +z,=n
In addition, let us denote z,,1 by = and
X = xvll+k+1 + $n+k+1 +- -+ xn+k+l’
Y = 2’;1+k + _,L_n+k + o+ xn+k
ZHxT“‘ ]+m"+" 1+_ +x”+" 1,

W =z129.. Zn.
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We have to show that
n(X 4+ 2™ Wa (af + 25+ +2k+25) > (n+a)(Y +2mh),
under the inductive hypothesis
(n—-1Y + W(a:i‘-’;—a:é b +xfl) >nZ.
Using this last inequality, it suffices to show that
n(X = Y)=nz(Y - Z) + 25 [W - nz"' + (n - 1)2"] 2 0.

We will consider two cases depending on k.
Case k > 1—n According to Chebyshev’s Inequality, we have

nY > (z1+z2 +- '+$n)($?+k_] gkt +_”+$,1:+k_1),

and hence Y — Z > 0. Since the inequality is symmetric, we may consider
that
12222 - 2Tn22Tny1 =2, 0<c < 1L

Thus,

(X ~Y)=nY - Z)e>n(X-Y)=n(Y —Z)=n(X —2Y + Z) =

and we still have to show that
W-nz"!l4+(n-1)2">0

Indeed, since z; — 2 > 0 for all z;, by Bernoulli’s Inequality we have

W=2z"T] (1 + :rl;:c) > z" (1 +> x,;x) =nz" ! - (n—1)z"

te=]

Case k <1 —n. According to Chebyshev’s Inequality, we have
nY <y +ze oot ozn) (@] 4 ap Rl g gkl

and hence Y — Z < 0. Since the inequality is symmetric, we may consider
that
Ty S8 SZp STpyr =2z, > 1.
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Then,
n(X-Y)—-n(Y -Z)z2n(X-Y)-n{(Y -2Z2)>0
and
i Ti—X n r,—x
W:”(l‘)>"1 ! — nz™ ! —(n—1)z"
a:i:l +— __a:(—i-; - nx (n—1)z",
. ri— T
since —1 < < 0 for all z;. This completes the proof
xr
Equality holds forn > 3 if and only if 2y =22 =- - = z,.
*
75. Let a,b, c be non-negative numbers, no two of which are zero. Prove that
a* N b N c a+b+ec
a3+ B+S B4ad T 2 '

Solution. Without loss of generality, assume that ¢ = max{a,b,c}. Write
the inequality as

al a N b b N ct _Yso
a3+ 6 2 B+3 2 A+ad 2)°7

a(a® - b%)  b(b3 - c?) (e —a?)

>0
ad + b3 Frd | Sdtad -

Since
a(a® —83)  b(a® - b%)  (a—b)(a® - b?)

_ — >0
a® 4 b? a® + b3 a® + b -
it suffices to show that
3 __ 13 3 _ _ .3
ba® - b3) b - B3) ¢ —a’) >0

ad + b3 + b3 + 8 t S+ad ~
Taking account of

b(a® —b3)  b(b® —cP) 2b%(ad — )

2108 RIS (@it

the last inequality is equivalent to
(¢ —a®)(c~b) [a3(2b3 4 b + bc? + &%) — B3c(b® + be - c2)] >0, (4)

or
a3(26% + bic + be? + %) — b3¢(b? + be — c*) > 0. (5)
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Case a > b We have

a®(26 4 b2+ be? + ¢3) — bie(b? + be — ¢?) >
2 (26 + b + be® + &)= b e(b? + be — *) =20 (° + %) 2 0.

Case 0 < a < b < ¢ According to (4), the original cyclic inequality is
true if

(a3—b3)(a—c) [b3(2c3 +cta+ ca® + av.3)—c3a(c2 + ca—a2)] > 0.
Since (a® — b%)(a — ¢) > 0, it suffices to show that
53 (2¢% + c%a + ca® + a®) - Aa(c® + ca—a?) > 0. (6)

To finish the proof, we will show that (5) holds for 56% < 5a® + ¢, and (6)
holds for 56% > 54° + . Due to homogeneity, we will consider c = 1 We
must show that

a2 + B2+ b+ 1) —b3B2+b—1)20 (7)
for 5% < 543 4 1, and
b3(2+a+a2+a3)—a(1+a—a2)20 (8)

for 56 > 5a% +1 The inequality (7) is clearly true for 2 + b — 1 < 0 For
b2 +b—1> 0and 5b° < 543 + 1, we have

5a°(26% 4+ b2 + b+ 1)—5b°(b* + b— 1) >
> (563 —1)(26% + b2 4+ b+ 1)— 563 (b2 + b—1) =
= 106%-+85° — b2 —b—1=8b5+ (b2 4+-b—1)(2b* —26° + 4b% +2b+1) >
> (b7 + b—1)(b* —26° + b?) = B2 (b* + b—1)(b—1)? > 0.

The inequality (8) is true for 56° > 5a3 + 1 because

5b3(‘2+a+a2+a3)—5a(1—|—a—a2)2
> (5a° +1)(2+a+a’ 4 a®) —5a(l + a—a?) =
:5a6+5a5+5a4+16a3-4a2—4a+2>
> 120° —4a® =50+ 2 = (22 — 1)}(3a + 2) > 0

Equality occurs if and only if a = b = ¢
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Glossary

(1) AM-GM (Arithmetic Mean-Geometric Mean) Inequality

If a;,as,...,an are non-negative real numbers, then
a1 t+az+ - -+ay 2naar  an,

with equality if and only if a; = a5 =- - =@y

(2) Weighted AM-GM Inequality
Let wy,ws, .,wn be positive real numbers with

w; +wy+ - +w, = L.

If a1,a2, ,an are non-negative real numbers, then
wiay + weaz + - +wpap > a)tay?  .ay",
with equahty if and only if a; = a2 = - - = a,.

(3) AM-HM (Arithmetic Mean-Harmonic Mean) Inequality

If @y,a3, .,an are positive real numbers, then
al+t12+--+an> n
n B 1’
aq as an
with equality if and only if a1 = a2 = - = an.

(4) Power Mean Inequality
For positive real numbers a;,a2,. ,an, the power mean of order r is

defined by

1
M, = { (a1+a2|- ") for r #0

L »/aias . for r =0

If not all a;'s are equal, then M, is strictly increasing for r € R. For instant,
M, > M > My implies

2 2 2
a a - a
/a1+a2+ + a§ > 1 +a2+ + an > vajar.

n n




Glossary 477

(5) Weighted Power Mean Inequality
Let p),p2,. ,pn be positive real numbers with
ptpt - +pn=1

For positive real numbers ay,as, . ,a,, the weighted power mean of order
r is defined by

p P2

1
y ( (praj + poal + + ppal)s for r#0
i ay’ as akr for r =0

If not all a;’s are equal, then M, 1s strictly increasing for r ¢ R

(6) Bernoulli’s Inequality
For any real numbers z > —1, we have
a)(1+z)214rzx forr>1,

b)(14z)"<l+4rx for0<r<1
In addition, ifa;,a3, ,a, arereal numbers such that either a;, az,. ,a,>0
or -1 <aj,az, ..,an <0, then

(14 a1)(1+a2). (1t+an)214ai+az+ - +an.

(7) Cauchy-Schwarz Inequality

For any real numbers aj,as, . ,a, and by, by, ..., b,, we have

(af +ad+- +al) (B3 +03+  +82) > (arbi+azba+-- + anbs)?
(I1ta)(l+a2). (I14+an)21+ai+as+- +an,

with equality if and only if a; and b; are proportional for all 4

(8) Holder’s Inequality

Let x5 (1= 1,2, .,m,j=1,2,. , 1) be non-negative real numbers.
Then .
n m n m 1
(£ ) =5 (fi-8)
i=1 \ j=1 i=1 \i=I
More general, if p;,pa, ..,pm are positive real numbers with

prtpat - t+pm=1,
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then

(9) Minkowski’s Inequality
For any real number » > 1 and any positive real numbers aq,as,...,an
and by, by, ..,bn, the inequality holds

(B vr) = (B) + (B)

i=1

i=1

(10) Cyclic Sum
If f is a function of n variables, define the cyclic sum as

Zf(al,ag,. .,an) :f(al,ag,.. ,an) +f(a.2,a.3,...,a1)+

cyc

+"'+f(an1a1) ,an—l)

In our book, the symbols Z and Z are identical.

cyc

(11) Schur’s Inequality
For any non-negative real numbers a, b, ¢ and any positive number r, the
incquality holds

Zar(a —b)(a—c) 20,

with equality if and only ifa =b=¢c,a=0and b=¢, b=0and ¢c = g,
¢c=0and a=¢
For r = 1, we get the third degree Schur’s Inequality

a® + b3+ 3 4 3abe > Zbc(b + ¢),
(a+b+ ¢)® + 9abc > 4(a + b+ c)(ab + be + ca),
Z(b —¢)*(b+c—a)20.

For r = 2, we get the fourth degree Schur’s Inequality

ad i+t + acha > Zbc(b2 + c2).
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(12) Maclaurin’s Inequality
If a;,as,. ,a, are non-negative real numbers, then

51282>2 - =5,

where

Zalag . ag

Sk = |

n
k
(13) Chebyshev’s Inequality
Let a; < a3 € - - < a, be real numbers
a) If by <by <+ < by, then

i=1

by b >by > - > by, then

Fos (£ (3

i=1 i=1 i=1

(14) Convex functions
A function f defined on an interval I of real numbers is said to be convex
ifforallz,yelandany ¢,3>0witha+ =1,

flaz + By) < af(z) + Bf(y) (1)

If (1) is strict for all z # y and @, 3 > 0, then f is said to be strictly convex.
If (1) is reversed, then f is said to be (strictly) concave
‘The inequality (1) is equivalent to

f(z1) f(z2) f(zs)

(z1 — z2)(z) — 23) t (2 —z3)(z2 —21)  (z3— 21)(2z3 — 22)

>0,
where 1, x4, z3 are distinct numbers in [

If f is differentiable on I, then f is (strictly) convex if and only if the deriva-
tive f' is (strictly) increasing

If fis continuous on [a, b] and f” exists on (a,b), then f is convex on |a, b]
ifand only if />0 If f” > 0, then f is strictly convex.



480 Glossary

If f” exists on (a,b), then f is convex on (a,b) if and only if /7 > 0. I
f” > 0, then f js strictly convex.

(15) Jensen’s Inequality

Let wy,ws,. .., wy be positive real numbers. If f is convex on an interval
I, then for any a;,a3, .,a, €I, the inequality holds

wy f(a1) +waf(ag) + -+ + wyf(an) > f(wlal + woag + "'+wnan)
wy + wg + + wy - w +w2+ -+ wy .

If f s strictly convex, then equality occurs if and only ifay = a3 = - -- = a,.

(16) Karamata’s Majorization Inequality

We say that a vector A= (a1,a9, - ,a,) With @) > a3 > --- > a,
majorizes a vector B = (by,by, -+ ,by) with by > by > --- > by, and write it
as A > B, if

a1 2 b17
a1+ ag > by + by,
ay+ag+ -+ an-1 b +bet- -+ by,
ai + a2 + "—}—an=b1+b2+"'+bn.
If f is a convex function on an interval I, and a vector A= (a1,a2,...,an)
with a; € I majorizes a vector B = (by, ba,...,b,) with b; € I, then

flar) + fla2) + -+~ + f(an) = f(b1) + f(b2) + -+ + f(bn).
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If f” exists on (a,b), then f is convex on (a,b) if and only if f” > 0. If
f? > 0, then f is strictly convex.

(15) Jensen’s Inequality
Let wy,wa,. .., ws be positive real numbers. If f is convex on an interval
I, then for any a;,a;, .,ay, €1, the inequality holds

w f(ay) +waf(az) + -+ +wnf(az) > f (wlal +waaz + - - +wnan)
w1 + wz 4+ 4wy, - w +wyt - wy '

If f s strictly convex, then equality occurs if and only if a; = az = - -- = ay.

(16) Karamata’s Majorization Inequality

We say that a vector A = (a1,az,- - ,a,) with a; > a3 2 --- 2 a,
majorizes a vector B = (by,by, -+ ,by) with by > by > --- > by, and write it
as A > B, if

a Zbl,

a1+a22b1+b21
ay+az+-tan12b bt -+ bn,
a1 +az+ -+ an=br+by+---+bn

If f is a convex function on an interval I, and a vector A= (a1,a2,...,az5)
with a; € I majorizes a vector B = (by, by,...,b,) with b; € I, then

flar) + fla2) + -+ f(an) 2 f(br) + f(b2) + -~ + f(bn).
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